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Abstract 
 

Ionospheric total electron content (TEC) plays an 

important role in introducing delay errors in space-based 

navigation and communication signals and requires early 

forecasting of the plausible impacts on the relying systems. 

In the present work, an autoregressive integrated moving 

average (ARIMA) is implemented in the time series 

analysis to forecast the TEC at an Indian low latitude 

location (KL University, Guntur; Geographic 16.37°N, 

80.37°E) during the quiet (5-9 January 2021) and disturbed 

(3-7 March 2022) geomagnetic conditions. The 

performance of the model is evaluated from the biases, root 

mean square error (RMSE), and correlation coefficients 

between model forecast and observed TEC. The results 

show that bias remains between -3 to +3 TECU and +2 to -

4 during quiet and disturbed days, respectively. The 

corresponding RMSE values are within a limit of 5 TECU 

and 6 TECU. The occurrence of plasma irregularities is 

also verified by analyzing the scintillation indices during 

the period. A further analysis refinement of the model is 

aimed to improve the forecasting accuracy over the region. 

 

1. Introduction 
 

The ionosphere plays a crucial role in space-based 

communication, navigation, and timing services as it 

introduces delays in the traversing signals. Total electron 

content (TEC) is a measurable quantity in the ionosphere 

that is corresponding to the characteristic ionospheric 

delays and is often considered for understanding the space 

weather influence on technological systems [1], [2]. The 

TEC is the total number of electrons encountered in the 

signal ray path from the satellite to the ground receiver, 

measured in electrons per square meter [3]. The rate of 

change of the TEC index (ROTI) is frequently used as a 

low-resolution proxy to the scintillation indices to define 

plasma irregularities [4]. Moreover, the high-resolution 

ionospheric TEC recorded by the specialized ionospheric 

monitoring Global navigation satellite system (GNSS) 

receivers is a good parameter to monitor the space weather 

effects and paves the possibility to develop time series data, 

and forecasting models. Time-series modeling is primarily 

concerned with gathering and analyzing available TEC 

measurements to represent the underlying structures of 

TEC in the ionosphere. The daily, monthly, and seasonal 

variations of ionospheric TEC have been investigated 

earlier to evaluate the corresponding ionospheric delay [5]. 

Several time series models like Auto regression (AR), 

Moving Average (MA), Autoregressive moving average 

(ARMA), Autoregressive integrated moving average 

(ARIMA) models, and traditional models like International 

reference ionosphere (IRI), Ne-Quick models have been 

presented in the past for short term and long-term 

forecasting of ionospheric TEC [6]–[11]. The ionospheric 

delay is evaluated in terms of daily, monthly, and seasonal 

TEC variations using 3 forecasting models ARMA, 

ARIMA, and Holt-winters model. Erdoğan et al. [12] 

forecasted two days VTEC using the second order 

autoregressive (AR2) model. The observations gave 98% 

periodic and stochastic components and the 10-minute, 15-

minute, and 20-minute forecasts gave good results. The 

long-term IGS data from 2006 to 2015 is used for analysis 

using the ARMA model. The prediction of VTEC showed 

that the precision is more in solar inactive years than the 

solar active years [13]. The comparative analysis of 

observed TEC with the IRI predicted values by Sharma et 

al. [14] at  Manama, Bahrain suggests the model 

overestimates during daytime and underestimates at night.  

 

In this paper, the forecasting performance of the ARIMA 

model is evaluated in a low latitude location where the 

input training data is obtained from continuously operating 

ionospheric TEC and scintillation monitoring specialized 

GNSS receiver, recently established at a low latitude 

location, KL University, Guntur, India. The TEC is 

forecasted for 5 days each in January (quiet condition) and 

March (disturbed condition) in 2022, using the ARIMA 

model. The efficiency of the forecast model is evaluated by 

analyzing the bias, RMSE, and correlation coefficients 

between the model and observed TEC values. 

 

2. Data and Methodology 
 

The TEC data used in this study are recorded by the multi-

constellation and multi-frequency GNSS receiver 

(Septentrio/PolaRx5S) located at a low latitude station K L 

University campus (Geographic coordinates: 16.26°N, 



80.37°E; Geomagnetic coordinates: 7.44°N, 153.75°E), 

Guntur, India. Figure 1 shows the geographic location of 

the receiver on the map along with the antenna/receiver 

setup. The technical details on this relatively newer GNSS 

receiver location are given in Vankadara et al. [15]. The 

system records the observations for a variety of GNSS 

constellations in ionospheric scintillation monitoring 

record (ISMR) format. The ISMR is a one-minute data that 

records the VTEC, amplitude scintillation index (S4 
index), phase scintillation Index (σϕ index), carrier to noise 

ratio, signal lock time for all the available signals and 

constellations recorded by the receiver.  

 

Figure 1. The location and the receiver setup used in this 

study. (a) Reveiver Setup recording the data. (b) 

VeraChoke ring antenna. (c) PolaRx5S receiver. 

 

The TEC corresponding to the legacy GPS L1 frequency is 

considered in this study as many of the single frequency 

applications are based on the aforesaid frequency. 

Autoregressive integrated moving average (ARIMA) 

models form a class of time series models that are widely 

applicable in the field of time series forecasting (Box et al., 

2015). The ARIMA model is defined by the ARIMA (p, d, 

q) where p refers to the non-negative autoregressive term, 

d is the non-negative integrating term and q is the non-

negative moving average term.  The general form of the 

ARIMA (p, d, q) model is given by [16];  

 

              ϕp (B)(1 − B)d Xt = c + θq (B)εt             (1) 

 

where p and q are non-negative orders of AR and MA 

processes, respectively; ϕp, θq are coefficients of AR and 

MA components; Xt is the VTEC value at time t; d denotes 

the number of times data differenced; B is the backward 

shift operator where BVt = Vt − 1; c is the constant term; εt 

is the error term whose normal distribution has zero mean 

and standard deviation (σ). The lag order of the best 

ARIMA model is defined by the Autocorrelation function 

(ACF) and partial autocorrelation function (PACF) such 

that the maximum number of errors is minimized [17].  

 

The TEC is forecasted for two cases: 5 days in January 

(DOY 3-7) and March (DOY 62-66) in the year 2022, 

corresponding to quiet and disturbed periods respectively. 

The disturbed and quiet days are chosen based on the list 

of international quiet days provided by the GFZ German 

Research Centre for Geosciences (ftp://ftp.gfz-

potsdam.de). The elevation angle cut-off is taken at 40º to 

reduce the errors due to multipath and ground signal 

interference. 

 

3. Results and Discussion 
 

Figure 2 (a) depicts the variation of observed GPS TEC  

and the forecast TEC during the 5 days in January 2022. 

The blue color represents the observed TEC data which is 

taken for the training of the forecast model whereas the red 

color represents the forecasted TEC for March 3-7, 2022 

which includes the geomagnetically disturbed days (March 

5 and 6). The RMSE and bias error for the forecasted and 

observed data are given in Figure 2 (b). It can be observed 

from Figure 2 (c) that the forecast parameters are closely 

following the observed TEC during the disturbed 

geomagnetic condition with the correlation coefficient 

R2=0.9822. The bias values are in a range of +3 to -3 TECU 

whilst the calculated RMSE values for the forecasted data 

range from 0 to 6 TECU.  

 

Figure 3 (a) shows the forecasted TEC (in red color) during 

the quiet days and its comparison with the observed GPS 

TEC parameter. The training data (in blue color) is taken 

from December 2021 to forecast TEC for 5 days (3-7 

January 2022). The RMSE and bias values between the 

forecast and observed TEC values are plotted in Figure 3 

(b) and the maximum RMSE and range of biases are listed 

in Table 1. It is observed that the RMSE values for the 

forecasted period remain less than 5 TECU. The bias values 

of the forecasted data range from +2 to -4 units. The scatter 

plots between the observed TEC and forecasted TEC is 

shown in Figure 3 (c) wherein the coefficient of correlation 

is relatively high (R2=0.9693), referring to an excellent 

agreement between the forecast and observed TEC 

parameters.  

 

 

Figure 2. The ionospheric VTEC forecasted from the 

ARIMA model for 5 to 9 January 2022. (a) shows the 

observed data (blue) for January and forecast data (red). (b) 

shows the RMSE and bias of the forecast data. (c) shows 

the correlation between the observed and forecast data. 

 



 
 

Figure 3. The ionospheric VTEC forecasted from the 

ARIMA model for 3 to 7 March 2022. (a) shows the 

observed data (blue) for February and forecast data (red). 

(b) shows the RMSE and bias of the forecast data. (c) 

shows the correlation between the observed and forecast 

data. 

 

Table 1. The mean RMSE, bias, and coefficient of 

correlation (R2) between the forecast TEC and observed 

TEC. 

S. 

No 

Month Max. RMSE 

(in TECU) 

Max. Bias  

(in TECU) 

R2 

1 January-

2022 

6 3 0.9693 

2 March-

2022 

5 2 0.9822 

 

The maximum RMSE, maximum bias, and the correlation 

coefficient between the observed and modeled TEC are 

listed in Table 1. The results were produced in line with the 

previous studies on both quiet and disturbed days 

respectively [17]. To further understand the plasma 

irregularities during the forecast period,  we analyzed the 

amplitude (S4) and phase (σφ) scintillation indices recorded 

by the specialized scintillation monitoring receiver 

(Septentrio/PolaRx5S). In Figure 4, the scintillation indices 

S4 and for the forecast days are shown both for the quiet 

days and disturbed days. Figure 4 (a) represents the S4 and 

σφ indices for the 5-9 January ( quiet period) whereas 

Figure 4 (b) represents the S4 and σφ indices for 3-7 March 

( disturbed period). The S4 and σφ during the selected 

disturbed period in March 2022  are very much higher than 

5-9 January ( quiet period), inferring that the scintillations 

are predominantly occurring during the March equinox 

months. During the disturbed period, the S4 index reached 

up to 0.7, indicating moderate scintillation conditions 

whereas σφ reached up to 0.2 with the magnitudes 

remaining within the ranges of weak scintillation 

conditions. The significant values for S4 and σφ indices are 

observed in the post-sunset period in March. This 

corresponds to the occurrence of equatorial plasma bubbles 

(EPBs) during the local postsunset prereversal 

enhancement (PRE) sector [4] The postsunset EPBs 

development over the equatorial and low latitude sector can 

be described through the Relay-Taylor instability 

originating from the bottomside of F-layer. During the 

quiet period, neither the S4 nor σφ shows any significant 

values. Although the scintillation indices show increased 

magnitudes during the disturbed period, the forecast errors 

are minimum in March compared to January. 

 

 
 

Figure 4. The observed S4 (blue) and σϕ (orange) for the 

5 forecasted days for January and March 2022. 

 

4. Conclusion 
 

In the present paper, the observed TEC and scintillation 

indices recorded by the newly established 

Septentrio/PolaRx5S ionospheric monitoring receiver at K 

L University campus in Guntur, India were considered in 

the analysis. The time series of TEC corresponding to GPS 

L1 frequency was used to train the ARIMA model for 

forecasting the parameter during both quiet (5-9 January 

2022) and disturbed (3-7 March 2022) geomagnetic 

conditions. It is realized from the analysis that most of the 

time the forecast values are in line with the observed TEC 

values. The correlation coefficient between the forecast 

data and observed data is greater than 0.9 in both cases, 

indicating high linearity between both values. The 

maximum bias error between the observed TEC and 

forecast TEC is less than 5 TECU. The ARIMA model used 

only the lags from the previously trained data set and give 

the forecast values. It does not include the ionospheric 

dynamics during the forecast period. But these values can 

be used to alert the mitigation systems in case of any major 

disturbance observed through this model data. The model 

can be further refined by preprocessing the time-series data 

with the removal of possible noises. Further, consideration 

of long-term data from the newly established ionospheric 

monitoring receiver would enable improving the forecast 

accuracy of the model in future works. 
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