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Abstract 

 
Space weather and ionospheric conditions effects on the        
Global Satellite Navigation System (GNSS) positioning      
performance and operation have already been identified.       
However, the qualification of this relationship is still a         
subject of scientific activities. A model forecasting the        
level of GNSS positioning performance degradation      
caused by space weather and ionospheric dynamics       
represents a valuable scientific goal. This manuscript       
addresses the refinement in forecasting model      
development procedure achieved through utilisation of      
selected supervised machine learning method based on       
Linear Models (LM) and Component Analysis (PCA) on        
experimentally collected data set of the quiet       
space-weather period.  
 
1. Introduction 
 
Studies indicating relations between space weather and       
ionospheric conditions and GNSS are cross-validated and       
accepted. However, the characterisation of the      
relationship is still the subject of scientific scrutiny. A         
model explaining relation of space weather effects on        
GNSS positioning performance would make a great       
supplement to GNSS-based applications and assist      
operators and users providing the evidence-based GNSS       
positioning performance degradation alerts [3], [4]. The       
alerts can then be additionally used to support the         
preparation of related risk mitigation operations [3]. This        
paper addresses the problem, establishes the methodology,       
and details development and validation of several models        
of space weather and ionospheric effects on GNSS        
positioning performance.  
 
This manuscript is structured as follows. Section 2        
provides description of the data set. Methods and        
methodology for model development are explained in       
chapter 3 and 4, respectively. Section 5 explains results         
which are summed up in chapter 6 together with         
manuscript’s conclusions.  

 
2. Data description 
 
A data set was created combining experimental data from         
internet-based archives and observations at Faculty of       
Maritime Studies, University of Rijeka, Croatia for day in         
June, 2007 (DOY167 in 2007). Each variable in data set is           
described in Table 1. All variables are numerical. 
 
Table 1 ​Related indices in the assembled data set 

Index Parameter description Remarks 

DOY Timestamp Serves for indication 

Bx Earth’s magnetic field 
density - x component 

Geomagnetic index, taken from 
the US NOAA archive 

By Earth’s magnetic field 
density - y component 

As stated above 

Bz Earth’s magnetic field 
density - z component 

As stated above 

SFD Solar flux density Space weather index, taken 
from the US NOAA archive 

SSN Sunspot number As stated above 

Ap Planetary geomagnetic A 
index 

Geomagnetic index, taken from 
the US NOAA archive 

Kp Planetary geomagnetic K 
index 

As stated above 

Dst Disturbance storm time 
index 

As stated above 

f0F2 Critical freq. of F2 layer Ionospheric index, taken from 
the US NOAA archive 

f0Es Critical freq. of Es layer As stated above 

SID Reference station signal 
strength observed with 
Sudden Ionospheric 
Disturbance (SID) monitor 

Ionospheric index, observation 
collected at Faculty of Maritime 
Studies, University of Rijeka, 
Croatia 



TEC Total Electron Content (as 
derived from dual 
-frequency GNSS 
pseudorange observations) 

Ionospheric index, derived from 
dual-frequency GNSS 
pseudorange data collected at 
IGS Matera, Italy reference 
station 

sdTEC Standard deviation of TEC As stated above 

d_fi Observed equivalent 
positioning error (latitude) 
[m] 

GPS, positioning performance 
index,derived from 
dual-frequency GNSS 
pseudorange data collected at 
IGS Matera, Italy reference 
station 

d_lam Observed equivalent 
positioning error 
(longitude) [m] 

As stated above 

d_plane Observed equivalent 
positioning error 
(horizontal) [m] 

As stated above 

 
3. Methods 
 
3.1 Linear regression model 
 
With linear regression model [1], one models the        
relationship between ​dependant and ​predictor variables.      
Linear model with n ​predictor ​variables has a form:  
  

 x .. xy = β0 + β1 1 + . + βn n + ε  (1)

where is ​dependant or ​response and are  y       , , ..., x   x1 x2   n  
independent variables or ​predictors​. are    , , ...,  β0 β1  βn   
regression coefficients. The random variable is an error       ε    
term. It represents random fluctuations of a model. In         
linear modeling, one often assume normality of the error         
term and statistical independence of the error term from         
the response. The model development procedure requires       
the estimation of regression coefficients which is usually        
done using experimentally observed (n+1)-tuples of      
values of and . The estimated model can  , , ..., x  x1 x2   n    y      
than be used to predict or forecast for an observed        y     
n-tuple and to estimate the accuracy of the , , ..., x  x1 x2   n         
prediction. Above the prediction and forecast, a linear        
model can also be used to summarise or explain observed          
data. When fitting linear model to observed data set, we          
use supervised learning [1]. Coefficients of the regression        
models are determined in the manner so the model         
becomes optimal in the sense of minimisation of the least          
square errors. 
 
3.2 Principal component analysis 
 
Principal component analysis (PCA) [2] is a statistical        
technique which transforms a data set with possibly        
linearly correlated ​predictor ​variables into a data set of         

linearly uncorrelated variables called Principal     
Components. The number of principal components is less        
or equal to the number of the initial input variables. The           
first k principal components comprise the most of the         
variability of a data under scrutiny among all competing         
transforms addressing the initial data set reduced to k         
variables. Consequently, the PCA is commonly used to        
reduce the dimensionality of a data set thus reducing the          
complexity of the model reducing: (1) the number of         
degrees of freedom of the hypothesis thus reduces the risk          
of overfitting, (2) the computable power of the algorithm.         
Reduction of dimensionality can also provide better       
visualization, insight into a data and a model outlook. 
 
4. Methodology 
 
Opposing the methodology in [4], in this study, only one          
ML model type (method) is considered. A selected model         
type is based on (multiple) linear regression. The aim is to           
identify the optimal model of the type (for the matter)          
through expansion of the machine learning-based model       
development process described in [4]. 
 
A multiple linear model is trained on 70% of the data. At            
the same time, t-test is run with respect to          H0 : βi = 0  
hypothesis for each ​predictor ​variable      xi

, where k is a number of different1, 2, ..., k}  i ∈ {            
predictor ​variables. As null-hypothesis is rejected when       
p-value is small, a small p-value indicates the predictor         
variable is likely to contribute to the model's ability to          
describe the process under observation. For a closer        
assessment of the trained model's quality, the ANOVA        
F-test is utilised with the respect to the null-hypothesis         
defined as: addition in the model having the same  x  H0 :  i        
response variable and all other predictors makes a        
significant change to the model. 
Again, rejecting the null-hypothesis marks selected      
predictor variable as likely to be an important        
(contribution) to the model. Lastly, residuals and forecast        
quality of the model are assessed (on the remaining data)          
using quantile-quantile (QQ) diagram and selected      
goodness-of-fit statistic, R-squared (R2) statistic,     
respectfully. R-squared represents the percentage of the       
response variable variation which is explained by a linear         
model and is graphically illustrated plotting      
predicted-observed diagram. Moreover, R2 provides an      
estimate of the relation between model and response        
strengthness which is formally proved utilising F-test.  
 
For this study, three different linear models with the same          
response variable are observed. The first model (model A)         
is a linear regression model which utilises all data set          
variables, apart form d_fi, d_lam, d_plane. The second        
model (model B) is trained after the analysis of the t- and            
F test p-values of the model and transforming the         
predictor variables set. A new predictor variables set        
contains only predictors which have both, t- and F-test         



p-values, valued less than 0.05. To obtain model C         
predictor variable set, model B predictor variable set is         
rotated utilising PCA expressing the values data set in         
Principal Components (PC). All three models are tested        
for quality and compared to the previous one. We label a           
model as of poor quality if its R2 value is less than 0.6, of              
good quality if its R2 value is between 0.6 and 0.8 and has             
at least normal residuals, and of very good quality if its           
R2 value is greater than 0.8 and has at least normal           
residuals and all predictors stated as relevant. 
 
Comparing to the previous study [4], the initial predictor         
variables set is established in the same manner, while the          
response is different, d_plane is replaced with d_lam. As         
d_plane is directly derived from d_fi and d_lam variable,         
one forecasting d_fi and d_lam can forecast d_plane. The         
methodology is applied in the open-source programming       
environment for statistical computing R [1], [5]. 
 
5. Results 
 
5.1 Linear modeling 
 
Evaluation of the model A revealed that all t-test p-values          
are valued less than 0.05, thus indicating the significant         
impact on the predictor variable (in a sense of linear          
modeling) of all variables in predictor variable set.        
Furthermore, SFD and SSN variables show lack of        
variability by being constant in observed data set, thus         
being obsolete for the model development. On the        
contrary, F-test indicates that several variables (Bx, By        
and SID) can not be claimed to be significant addition to           
the model, since the respective F-test p-values associated        
with three variables exceed any (reasonable) significance       
level (0.1, 0.05, and 0.01). 
 

 
Figure 1 ​Model A: Predicted-observed diagram  
 
Predicted-observed and QQ diagrams, presented in Figure       
1 and 2, classifies model A as of good (forecast) quality           
according to criteria explained in Section 4. The analysis         
of the QQ diagram does not provide the evidence for          
rejection of the normality of residuals hypothesis and R2         
is greater than 0.7.  

 

Figure 2 ​Model A: QQ diagram  

 

Figure 3 ​Model B: Predicted-observed diagram 

 

Figure 4 ​Model B: QQ diagram  

In development procedure of the model B, the set of          
predictor variables should comprise only those predictors       
identified as significant for the model B by both F- and           
t-tests. In other words, one seeks to meet the linearity          
condition for the model. In order to fulfill the requirement,          
either the initial variables data set is reduced or selected          
variables are transformed. As reduction of the initial        
variables set results in significant reduction in quality, the         
model B predictor variables set is established       
transforming the initial variables set as follows. Bx, By,         
Bz are recentered, f0F2 and f0Es re-scaled using the         
logarithmic function, and SID is transformed in a way to          
obtain zero median with absolute value standard deviation        
equal to one. Both the F- and t-test p-values were valued           
less than 0.05, thus confirming the success of the model B           
training process. The predicted-observed diagram at      
Figure 3 and QQ diagram at Figure 4 show no significant           
reduction in model forecasting quality. Model B is of the          
forecasting quality comparable to model A, taken as the         



control one, but without statistically insignificant      
variables that preserve the unwanted noise. 
 
5.2  Principal component analysis 
 
The approach taken in the model C development aimed at          
model complexity reduction using the PCA. First, the        
linear model is trained on the model B data set. Then, the            
linear model’s F- and t- tests p-values are assessed. The          
fifth PC t-test p-value of 0.656 exceeds significantly the         
referent value of 0.05 which renders this predictor        
variable insignificant for the model development. Finally,       
the linear model is trained again but on the set of predictor            
variables without the fifth PC. The resulting model C has          
at least sustained (forecasting) quality comparing to the        
model A, as evident from (forecasting) quality results        
depieced in Figure 5 (Predicted-observed diagram) and 6        
(QQ diagram). The reduction in number of predictors        
reduces the model complexity which makes model C        
computationally more efficient than model A. 

 

Figure 5 ​Model C: Predicted-observed diagram 

 

Figure 6 ​Model C: QQ diagram  

A closer consideration of quality assessment of the        
developed models reveals that the model C yields the         
experimental distribution of residuals that is the closest to         
the equivalent normal distribution. All together indicates       
the model C to be the best candidate for the forecasting           
model in focus. 
 
6. Discussion and conclusion 
 
This manuscript presents the results of the study on model          
development approaches in forecasting the GNSS      
positioning performance dependence on space weather      

and ionospheric conditions. Three linear models were       
developed based on experimentally collected data sets       
using separate model development approaches. In      
continuation of the previous research [4] and [5], the         
improvements in the model development process were       
demonstrated. Improvements are based on optimisation      
of the process through identification of statistically       
significant predictors and achievements of the      
computational efficiency reduction utilising PCA.     
Optimisation was achieved at no cost for the model         
forecasting quality and remained at requested level for all         
three modelling approaches (R2 value valuing a bit higher         
than 0.7 and not rejecting normality of residuals).  
In future research, it is expected to focus on the          
characterisation of the GNSS positioning performance in       
other space weather and ionospheric conditions scenarios,       
such as those with mild disturbances or a large         
ionospheric storm and the determination of the       
appropriate methodology for statistical forecasting model      
development in the given GNSS positioning environment       
conditions. 
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