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Abstract

We present the general features and aspects regarding the
electromagnetic scattering by a small core-shell sphere.
First, the thickness effects on the plasmonic resonances are
described in the Rayleigh limit, utilizing the MacLaurin ex-
pansion of the Mie coefficients of hollow scatterers. The re-
sults are connected with the plasmon hybridization model.
A brief study regarding the core effects is given, illustrating
resonant scattering peculiarities. Finally, new electrody-
namic aspects of the scattering process are revealed through
a the newly introduced Padé expansion of the Mie coeffi-
cients. The proposed methods can be readily applied for the
studies of the dynamical dependencies for other canonical
shapes, carving ways for engineering the overall properties
of a single composite scatterer.

1 Introduction

One of the most studied canonical problems demonstrating
a wealth of electromagnetic radiation controlling possibil-
ities is the problem of plane wave scattering by a spher-
ical particle; a benchmarking platform that provide in-
sights about the nature of many single scattering phenom-
ena [1, 2]. In this presentation we will discuss the general
features regarding the electromagnetic scattering by a small
core-shell sphere.

2 Results and Discussion

Thickness effects for the plasmonic resonances (collective
oscillations of the free conduction charges in metals [3])
will be presented for the electrostatic limit [4], revealing a
series of special characteristics, such as the resonant trends
of the symmetric and antisymmetric dipole resonances [5].
For instance the Taylor expansion of the first electric Mie
coefficient (a1) for a hollow core-shell sphere gives
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Figure 1. Problem setup: a core-shell sphere with internal
radius a and external b under plane wave illumination.

where η = a
b is the radius ratio. Note that we have two types

of resonances, the symmetric (bonding) and antisymmetric
(antibonding) [6], denoted ε− and ε+, respectively.

A generalization towards higher order multipoles is given,
following the same static-limit approximation the Mie co-
efficients for small hollow scatterers [7]. As a rule-of-
thumb thick shells exhibit a volume dependence on their
first dipole resonance, while thin shells have a linear de-
pendence, even for higher multipoles.

The agreement between the static-derived results and the
plasmon hybridization model will be demonstrated, illus-
trating the common mathematical origins of these theoret-
ical models. For the case of a spherical hollow core-shell
structure, after a significant amount of calculations, these
resonant frequencies are described by the following condi-
tion [8]
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where ω2
1+ and ω2

1− is the symmetric and antisymmetric
resonances for a given background frequency (plasma fre-
quency) ωB and a given multipole, i.e., dipole (n = 1),
quadrupole (n = 2) and so on [9].

By assuming a lossless Drude material dispersion model,

i.e., ε = 1− ω2
B

ω2 and inserting it in Eq. (3) we obtain two



discrete resonances
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described as a function of the radius ratio η . For the dipole
case the following expression is obtained
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Figure 2. The extinction efficiency spectrum as a function
of the core material (lossless) and the radius ratio for a small
sphere (y = 0.01). For the plasmonic case (bn ≈ 0) the ex-
tinction cross section is Qext ∝ ∑

∞
n ℜ{an}, with n = 1,2, ....

The bright lines correspond to the symmetric (left line)
and antisymmetric (right line) dipole plasmonic resonances,
while higher order multipoles are not visible. Note that the
color scale is logarithmic and is omitted, normalized for
better visualization of the resonances.

Additionally, the effects due to the (relative) permittivity of
the core of the will be discussed, revealing the existence of
a core-induced scattering peculiarity. Briefly, for every n-
multipole there is a specific permittivity value of the core
where both symmetric and antisymmetric resonances con-
verge, for very thick shells (η → 0), i.e.,
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The presentation will conclude with an analysis of some
electrodynamic effects, utilizing the Padé approximants of
the Mie coefficients. This expansion is able to capture
the dynamic scattering mechanisms e.g., radiative damp-
ing [10, 11]. In this way both static and hybridization model
are expanded, revealing promising results about the scat-
tering process, such as the damping dependencies in both
radius ratio and core material permittivities. These results
can inspire further studies on the dynamical dependencies

of other canonical shapes, carving ways for engineering
the radiative damping mechanism and affecting the overall
properties of a single composite scatterer.
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