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Abstract

Dynamic spectrum access (DSA) paradigm has shown sig-
nificant potential to improve the electromagnetic spec-
trum utilization. For DSA in the multi-user decentral-
ized networks, frequency band characterization and allo-
cation among unlicensed users is a non-trivial task and
various decision making policies (DMPs) have been pro-
posed recently. Though auction based DMPs have shown
to offer better performance than others, there is still a sig-
nificant gap between the throughput of the decentralized
DMPs and centralized or cooperative DMPs. In this paper,
we propose a DMP for multi-user decentralized network
comprising of Bayesian multi-armed bandit (MAB) frame-
work for frequency band characterization and multi-band
auction mechanism using Distributed Bipartite Matching
Algorithm for frequency band allocation. The proposed
Bayesian MAB framework makes the frequency band char-
acterization accurate and faster thereby minimizing the se-
lection of sub-optimal bands as well as the frequency band
switching. Simulation results validate the superiority of the
proposed DMP over existing state-of-the-art DMPs.

1 Introduction

Dynamic spectrum access (DSA) paradigm has generated
significant interests in the academia as well as industry due
to its potential to improve the utilization of an electromag-
netic spectrum [1, 2]. In DSA, unlicensed users (UUs) can
access vacant licensed frequency bands provided that they
do not interfere with active licensed users. In the dynamic
spectrum environment, frequency band quality may not be
the same for each UU and hence, decision making, i.e.,
frequency band characterization and allocation, should be
done by each UU independently. However, distinct UUs
may transmit on the same band leading to collision. Colli-
sion not only leads to loss in throughput but also drainage
of battery and hence, the decision making policies (DMPs)
which guarantee collision-free transmissions in the decen-
tralized network are desired.

Recently there has been some progress on the design of
DMPs for DSA in the decentralized networks [2–8]. In
[3], decentralized DMP using online learning algorithm and
rank based approach has been proposed. It is extended fur-

ther in [3–5] to improve the throughput. The main draw-
back of such DMPs is the large number of collisions thereby
leading to loss in throughput as well as battery. In [6], hop-
ping based DMP has been proposed where user can leave
or enter the network anytime and it is collision-free. Since
all the frequency bands are chosen with equal probability,
throughput of the DMP in [6] is lower than other DMPs
[3–5]. Recently, DMPs using auction approach have been
proposed which are collision-free and hence, offer better
throughput than other DMPs at the penalty of small com-
munication cost [7, 8]. Still, there is a significant gap be-
tween the throughput of the decentralized DMPs and that
of the centralized or cooperative DMPs.

In this paper, we propose a new DMP for the DSA
in the multi-user decentralized network comprising of a
multi-band auction mechanism using Distributed Bipartite
Matching (DBM) algorithm [7, 9] for frequency band al-
location and Bayesian multi-armed bandit (MAB) frame-
work for frequency band characterization. The proposed
Bayesian MAB framework is based on the Bayesian Upper
Confidence Bound (BUCB) algorithm [10] for accurate fre-
quency band characterization and lower upper confidence
bounds (LUCB) [11] for identifying the subset of optimal
frequency bands thereby reducing the exploration cost (i.e.
number of sub-optimal band selection) of BUCB algorithm.
Furthermore, proposed auction algorithm may allocate sec-
ond frequency band to certain UU based on the quality of
the first allocated band and the number of active UUs lead-
ing to further improvement in the throughput. Simulation
results validate the superiority of the proposed DMP over
existing state-of-the-art DMPs in terms of total throughput
and the number of frequency band switching (FBS).

The paper is organized as follows. The assumed network
model is presented in Section 2 followed by the proposed
DMP in Section 3. In Section 4, simulation results are
discussed. Section 5 concludes the paper.

2 Network Model

Consider the time slotted decentralized network consisting
M UUs competing for N frequency bands. The throughput
offered by each frequency band, when they are vacant, may
not be same for all UUs. When ith UU transmits on the



vacant frequency band k, it gets zero throughput if there
is a collision with other UU. If no collision, throughput is
governed by i.i.d. distribution with mean µik and variance,
σ2

n . Let Xi,k(t) be the throughput received by user i when it
transmits over the frequency band, k, in time slot, t. Then,
total loss in throughput, referred to as regret R(T ), of the
DMP with respect to genie-aided DMP is given by

R(T ) = T
M

∑
i=1

µi,k∗ −E
[ T

∑
t=1

M

∑
i=1

[βi(t)Xi,ai,1(t)(t)

+(1−βi(t))Xi,ai,2(t)(t)]
]

(1)

βi(t) =

{
1 ai,1(t)is vacant
0 ai,1(t) is occupied

(2)

where T is horizon, µi,k∗ is the average throughput of the
frequency band assigned to the ith UU in genie-aided DMP,
ai,1(t) and ai,2(t) are the first and second frequency bands
allocated to ith UU, respectively. In Eq. 1, Xi,ai,2(t)(t) <
Xi,ai,1(t)(t) for any ai,1(t) = ai,2(t). In addition to regret, the
number of times UU switches the frequency band should
be as low as possible. This is because, each FBS incurs
penalty in throughput as well as battery due to hardware
reconfigurations and communication overheads. The total
number of FBS, S(T ), is given by,

S(T ) = E
[ T

∑
t=1

M

∑
i=1

[βi(t)βi(t−1)1{ai,1(t)=ai,1(t−1)}

+βi(t)(1−βi(t−1))1{ai,1(t)=ai,2(t−1)}

+(1−βi(t))1{ai,1(t)=ai,2(t)}]

]
(3)

where 1{.} is an indicator function. The aim of the proposed
DMP discussed next is to minimize the regret i.e. loss in
throughput, R(T ) as well as the number of FBS, S(T ).

3 Proposed Decision Making Framework

In this section, the proposed decision making framework
for frequency band characterization and allocation is pre-
sented. The various decision making steps in each time
slot of the proposed framework are shown in Algorithm 1.
Steps 2-15 deals with the frequency band allocation to UUs
and hence, referred to as allocation phase. In the alloca-
tion phase, the proposed DMP employs auction algorithm
(discussed in sub-section 3.1) for frequency band alloca-
tion, BUCB algorithm (discussed in sub-section 3.2) for
frequency band characterization and LUCB algorithm (dis-
cussed in sub-section 3.3) to identify optimal subset of fre-
quency bands. Execution of allocation phase depends on
the value of the counter, η , and t, as shown in Algorithm 1.
Please refer to [7] for more details on η selection.

Steps 17-28 of Algorithm 1 are referred to as transmis-
sion phase and they are executed in each time slot. In the

transmission phase, every UU senses the first allocated fre-
quency band, i.e., ai,1(t). If vacant, corresponding ith UU
transmits over it and updates the throughput, Xi,ai,1(t)(t).
Otherwise, second allocated band, ai,2(t), if any, is sensed.
If vacant, ith UU transmits over it and updates the through-
put, Xi,ai,2(t)(t). Otherwise, UU remains idle until the be-
ginning of the next time slot.

3.1 Proposed Auction Algorithm

For the orthogonal frequency band allocations, i.e. ai,1(t)
and ai,2(t)∀i, the proposed modified DBM auction ap-
proach is given in Algorithm 2. Auction is executed at
certain time slots chosen according to the counter, η , as
shown in Algorithm 1.This means that the probability of
auction diminishes as more UU settles in their preferred

Algorithm 1 Proposed Decision Making Policy for ith UU
1: Initialization Set counter η = 1, N̄i=N, k̄i ∈
{1,2, .., N̄i}, Bi = {1,2,...,N}.

2: while (t <= T) do
3: if (t = p ·T ∗ for some p = 0,1,2....) then
4: N̄i=min(2M, N)
5: Obtain the indexes of N̄i number of optimal

frequency bands using LUCB algorithm and
store their indices in Bi, i.e. |Bi|= N̄i ∀i.

6: if (η = 2p for some p = 0,1,2....) then
7: Using BUCB algorithm, obtain quality fac-

tor of N̄i frequency bands whose indexes are
stored in Bi.

8: Participate in DBM Auction given in Algo-
rithm 2 to obtain allocated frequency bands,
ai,1(t)and ai,2(t).

9: if (ai,1(t) 6= ai,1(t−1)) then
10: Send an INTERRUPT to all UUs about fre-

quency band change.
11: Reset η = 1
12: if INTERRUPT Received then
13: Reset η = 1
14: else
15: ai,1(t) = ai,1(t−1), ai,2(t) = ai,2(t−1)
16: Sense the frequency band ai,1(t)
17: Ti,ai,1(t)(t) = 1
18: if ai,1(t) is vacant then
19: Transmit and observe the instantaneous

throughput, ξ1. Update Xi,ai,1(t)(t) = ξ1
20: else
21: Sense the frequency band ai,2(t)
22: Update Xi,ai,1(t)(t) = 0 and Ti,ai,2(t)(t) = 1
23: if ai,2(t) is vacant then
24: Transmit and observe the instantaneous

throughput, ξ2. Update Xi,ai,2(t)(t) = ξ2
25: else
26: Xi,ai,2(t)(t) = 0.

27: Increment counter η = η +1, t = t +1



Algorithm 2 Proposed DBM Auction Algorithm for UU i

1: Initialization Initialize prices of all bands to zero,
i.e., pk̄ = 0 ∀k

2: UU identifies the preferred frequency band from
unallocated bands using BUCB quality index and
calculates its bid. For the preferred band index, k̄,
bid is χi,k̄ = maxk̄(µi,k̄− pk̄)− second maxk̄(µi,k̄−
pk̄)+

ε

M − pai,1(t)
3: After receiving bids from all UUs, UU with the

highest bid wins the corresponding band. Set pk̄ =
µi,k̄ where UU i is the winner of the band k̄

4: Follow steps 2-4 till the UU gets the band.
5: if M ≤ N then
6: Follow steps 2-4 until UU gets second band or all

bands are allocated.

frequency band. In the beginning, each UU sends the bid
for its most preferred frequency band to all other UUs as
shown in step 2 of Algorithm 2. The UUs with highest bid
get their respective preferred bands. Remaining UUs again
follow the same process iteratively but every time they send
the revised bid for their preferred frequency band chosen
from the unallocated bands. Fist stage auction completes
when each UU gets the band which is denoted as ai,1(t)∀i.
If M < N, then the proposed auction algorithm allocates
the remaining frequency bands as second choice frequency
bands, referred to as ai,2(t), as shown in steps 6-7 of the Al-
gorithm 2. However, the priority is given to the UU which
has the most sub-optimal band in the first allocation. This is
accomplished by adding the term pai,1(t) in bid calculation
which is zero in the first band allocation and gives lower
preference to UUs with optimal first band.

3.2 Frequency Band Characterization

In the auction algorithm, each UU needs to send its bid (or
price) for the preferred frequency band which has not been
allocated to any UU yet. In order to determine the preferred
band, UU needs to characterize the frequency bands. In
the proposed DMP, we have formulated the frequency band
characterization problem into MAB framework. Here, each
arm is analogous to frequency band and the task is identify
the best arm, i.e. band. Selection of bands in each time slot
is done by MAB algorithm which needs to balance between
the exploration of N bands and exploitation of optimal
bands. MAB algorithms include frequentist approach based
Upper Confidence Bound (UCB) algorithm [12], Bayes-
UCB (BUCB) [10] and Thompson Sampling (TS) algo-
rithms [4, 10]. Though these algorithms are asymptotically
optimal, it has been recently proved that BUCB and TS al-
gorithms offer better performance and have lower compu-
tational complexity than others [10]. Empirically, we ob-
served that the BUCB algorithm offers slightly better per-
formance than TS algorithm and more importantly, it leads
to fewer number of the FBS. These advantages make the
BUCB algorithm a preferred choice for the proposed DMP.

In the proposed DMP, frequency bands are characterized
based on their quality (i.e. throughput) using BUCB index
as shown in Eq. 4 [10].

Gi,k̄(t) = Q

{
1− 1

t
;Beta

[ t

∑
v=1

Xi,k̄(v)+1,

t

∑
v=1

Ti,k̄(v)−
t

∑
v=1

Xi,k̄(v)+1
]}
∀k̄ (4)

where Q(x) is the probability that any normal random vari-
able gets a value larger than x standard deviations above
the mean and Beta represents the complete beta function,
i.e., Euler integral of the first kind. In order to choose the
preferred frequency band in step 2 of Algorithm 2, UU se-
lects the frequency band having the maximum value of the
BUCB quality index in Eq. 4 among the unallocated bands.

3.3 Frequency Band Partitioning: LUCB

The task of the frequency band characterization using
BUCB algorithm becomes challenging as the number
of frequency bands, N, increases. This is because of
exploration-exploitation trade-off which requires BUCB al-
gorithm to select all frequency bands sufficient number of
times to guarantee accurate characterization. In order to
further limit the selection of sub-optimal bands without
compromising on the characterization accuracy of optimal
bands, LUCB [11] algorithm is used to identify N̄i bands for
all UU. This is achieved by comparing the lower and upper
confidence bounds on the throughput offered by each band.
Please refer to [11] for more details. The LUCB is invoked
at regular intervals after initial exploration period as shown
in Steps 3-5 of Algorithm 1.

4 Results

In this section, the performance of the proposed DMP is
compared with the existing state-of-the-art DMP in [7] in
terms of throughput and the number of FBS. Since the DMP
in [7] has shown to be superior than DMP in [8], the com-
parison with the latter is not done here for clarity of the
figures. Simulations consider 20 distinct frequency bands
and the number of UUs are varied from 3 to 18. Each nu-
merical result reported hereafter is the average of the values
obtained over 50 independent experiments and simulations
consider a time horizon of 10000 iterations. The statistics,
µi,k, are randomly generated at the start of each experiment
and remains the same throughout but may change from one
experiment to another. Also, µi,k may not be same as µ j,k
for UUs, i and j. The value of T ∗ in Algorithm 1 is 1000.

In Fig. 1a, Fig. 1b and Fig. 1c, the regret, i.e. loss in
throughput, at various stages of the horizon is shown for
M = {3,9,18}, respectively. We consider two variations of
the proposed DMP: 1) Proposed DMP designed with UCB
algorithm and, 2) Proposed DMP designed using BUCB
(+LUCB) algorithms. Note that DMP in [7] employs UCB
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Figure 1. Total loss in throughput at various stages of horizon for (a) M=3, (b) M=6, and (c) M=18.
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Figure 2. (a) Total loss in throughput and (b) Total number of FBS at the end of Horizon for different values of M.

for frequency band characterization. The superior perfor-
mance of UCB based proposed DMP validates the superi-
ority of the proposed auction algorithm for frequency band
allocation over DMP in [7] while the superior performance
of BUCB based proposed DMP over other DMPs validates
the superiority of proposed MAB framework consisting of
BUCB and LUCB algorithms for accurate frequency band
characterization. In Fig. 2a and Fig. 2b, the regret and FBS
for different values of M are shown. It can be observed that
proposed DMP offers superior performance for all M.

5 Conclusions and Future Works

In this paper, we propose a decision making policy (DMP)
for dynamic spectrum access in multi-user decentralized
network. The proposed DMP consists of Bayesian multi-
armed bandit framework for frequency band characteriza-
tion and multi-band auction mechanism using Distributed
Bipartite Matching Algorithm for frequency band alloca-
tion. Simulation results validate the superiority of the pro-
posed DMP over existing state-of-the-art DMPs in terms of
total throughput and the number of frequency band switch-
ings. Future works includes in-depth regret analysis and
extension of the proposed DMP for full duplex radios.
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