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Abstract

Radio frequency interference (RFI) is an ever-increasing
problem for remote sensing and radio astronomy, with radio
telescope arrays especially vulnerable to RFI. Localising
the RFI source is the first step to dealing with the culprit
system. In this paper, a new near-field localisation algo-
rithm for interferometric arrays with low array beam side
lobes, is presented. The computational complexity of the
algorithm is linear with search grid size compared to the 3D
MUSIC method which scales with the cube of search grid
size. The trade-off is that the algorithm requires a once-off
a priori calculation and storing of weighting matrices. The
proposed algorithm has the same accuracy as 3D MUSIC.

1 Introduction

Radio frequency interference (RFI) is an important issue
in many areas of scientific research, for example in remote
sensing and radio astronomy. The ideal solution is to iden-
tify the location of the RFI and then remove it. For arrays
with a high sensitivity or a large spatial extend, near-field
sources are of particular interest. This is particularly true
for large radio astronomical arrays such as the Low Fre-
quency Array (LOFAR) [1] and the Square Kilometre Ar-
ray (SKA) [2], which span entire continents and therefore
detect many RFI signals from TV and radio broadcast to-
wers and even satellites in their near-field. This makes these
arrays an excellent proving ground for near-field RFI loca-
lisation and mitigation methods.

Current near-field source localisation algorithms either
make use of brute force methods (such as MUSIC [7, p.
80-82] where the entire solution space is searched) or ex-
ploit the array layout (a common layout is a uniform linear
array). Methods that exploit a uniform linear array layout
include path following [3] and polynomial rooting [4].

For radio astronomy arrays, brute force methods are com-
putationally expensive due to the large near-field area cau-
sed by long baselines. Furthermore, to obtain as much in-
formation as possible for imaging (optimising the UV co-
verage) the array layouts are non-uniform and non-linear.
However, radio astronomy interferometric arrays have the
advantage that the array beam has low side lobe levels. The-
refore, a novel computationally efficient near-field source

localisation algorithm is presented which is designed for ir-
regular interferometric arrays and takes advantage of low
array beam side lobes.

In this paper, the following notation is used:

A Bold upper-case letters are matrices.
The jk™ element is indicated by A j;.

a Bold lower-case letters are column vectors.
The j™ element is indicated by a;.

I Identity matrix.

-1l Norm of a vector.

Tr(+) Trace of a matrix.

diag(-) Converts a vector into a diagonal matrix.

YA Phase of a complex number.

i Square root of -1.
Speed of light.

T

Hermitian transpose of a matrix.
Transpose of a matrix.

Complex conjugate of a scalar.

Real part of a complex number.
Imaginary part of a complex number.
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2 Data Model

The scenario that is considered is where an array is obser-
ving astronomical sources and the measurements are con-
taminated by a single near-field RFI source. This will later
be generalised to multiple RFI sources. The assumption
is made that the power of the RFI source is considerably
higher than the power from the astronomical sources, the-
refore the astronomical sources are omitted from the model.
Direction dependent effects such as path loss, polarisation
mismatch factor, the gain of the antennas and atmospheric
effects are not considered. Furthermore, direction indepen-
dent effects such as the receiver electronics, in particular
the low noise amplifiers, are also not considered.

To keep the model simple the output of the array will only
be considered for a single frequency channel and polarisa-
tion. If the array consists of N, elements, then at time ¢ the
voltage output can be expressed as [5]

y(t) = Xy(t) +Xn(t), (D

where y(t) = [y1(t),...,yn,(t)] is the vector of the me-
asured array output signals, X,(r) = [s(t — 7,),...,s(t —
7y, )]" is the vector of the delayed RFI signal and X, (1) =



[n1(t),...,nN,(t)]T is the vector of instrumental noise for
each antenna.

For the j‘h antenna, T; is the delay between the source loca-
tion and the array element and is given by 7; = ||v, —v,||/c
where v, and v; are the position vectors of the RFI source
and antenna, respectively. The delayed signal can be ap-
proximated by s(¢ — 7;)  s(t)e~2"V% where V is the cen-
tre frequency of the channel. This condition is satisfied if
2TAV Ty < 1 [6], where AV is the signal’s bandwidth and
Tmax 18 the delay given by the longest baseline (greatest dis-
tance between any two antennas). The phase delays of the
source can be stacked into a vector that is called the geome-
tric delay vector a(vy) = [¢"?7¥" ™™ T Therefore,
the model in equation (1) can be written as

y(1) = a(vy)s(t) +x(1). 2)

To create images, interferometric radio astronomy ar-
rays need the covariance matrix of the signals R =
E{y(t)y" ()}, where E is the expectation. Independence
is assumed between the RFI source and the noise, there-
fore, the covariance matrix of equation (2)is R=R;+R,, =
a(vy)o2al’(v;) + R, where 62 = E{s(t)s*(t)} is the power
of the RFI signal. If Ny RFI signals are present, then the co-
variance matrix is the sum of the covariance matrices (R; ;)
for each signal

L,

Ns
R=) R,;+R, =Ry +R,
j=1

= A(V,)SA# (V) +R,, 3)

because all the operators used are linear, where
A(V;) = [a(VsJ ), .. ,a(VS’Nx)], VS = [Vs,l g 7Vs,Ne}
and S = diag([6?,..., GS%NE]). A classical delay beamfor-
mer can be used to create a dirty image from the covariance
matrix by calculating for every voxel [7, p. 88]

a’(v)Ra(v) .

) == )

A peak in this image indicates the position of a source.

3 Proposed Source Localisation Algorithm

The proposed algorithm consists of three stages. The first
is preprocessing, which attempts to remove instrumental
noise signals and isolate individual RFI sources. This is fol-
lowed by the intergrating-out-variables method which ex-
ploits the low side lobes and produces a good estimate. This
is then used as the initial guess for a fast converging itera-
tive method in the final step.

3.1 Stage 1: Preprocessing

The objective of the preprocessing step is to reduce the ef-
fect of the instrumental noise signals and isolate individual
RFI sources. As the instrumental noise signals of the an-
tennas are not identically distributed, the noise powers in

R, will differ. However, the assumption is made that the
instrumental noise signals of the antennas are independent,
therefore R,, is a diagonal matrix.

To remove the effect of R,, on R a statistical method such as
factor analysis [8, p.211-232] can be used, which decompo-
ses the N, x N, covariance matrix into R = ZZ" + D, where
Z is an N, x Q matrix and D is a diagonal N, x N, matrix.
If the method is applied successfully D ~ R, and therefore
77H ~ Ry (see equation (3)). If the columns of A(Vy) are
linearly independent and Ny < N,, then Q = N;. For the
method to converge an upper limit on the number of factors
0, namely Q < (N, —+/N,), is imposed [5].

The columns of Z are now used to construct new cova-
riance matrices Ry ; = Z(:, j)Z"(:, j). Consequently, the
sources are divided between these covariance matrices and
in the ideal case, where the columns of A(Vj) are ortho-
gonal, each Ry ; will match with an Ry ;. In most radio
astronomy data sets a single snapshot covariance matrix is
affected by one or two RFI sources and even though the
columns of A(V,) may not be orthogonal the separation is
sufficient that each Ry ; will contain the majority of one
source’s power. LOFAR data indicates that unwanted di-
rection and direction independent effects have the greatest
effect on the amplitude of the elements of Ry ;. This effect

can be removed by considering only the phase information,
/Ry
e,

3.2 Stage 2: Integrating-out-variables

Let the matrix W = e’ZRf?/', where ¢“Rf.J is a result from
the preprocessing step. Since W is Hermitian with no am-
plitude information, all the information is contained in the
top (or bottom) triangular part of W. There is a total of
N, = (N> — N,)/2 elements in both the triangular parts
which is equal to the number of antenna combinations (also
called baselines). By stacking the transposed rows of the
top triangular part of W, an Nj, x 1 vector B is created. The
classical delay beamformer spectrum can then be rewritten
as a sum (omitting the dependency on v)

Np
J=Tr(R)+2 Zl [%(ﬁp) cos(§,) +3(B,) sin(Cp)] ,
=
&)

where vector § contains the stacked (similar to B) angle
differences 7; — % and y; = 2Z¥||v — v;||, where v; is the
position of the jM antenna. The traditional method to find
the location of the source requires that a beamformer must
be constructed for every voxel in the near-field (where the
number of voxels is dependent on the resolution as well
as the size of the near-field). This problem therefore has
computational complexity &'(N, x Ng x Ny).

To reduce the computational complexity of finding a source
location from cubic to linear, the proposed method integra-
tes out variables and then only varies one variable to find



the peak. The trigonometric functions in equation (5) can
not be analytically integrated, therefore the integration is
done numerically once a priori and is stored (the trade off is
therefore that the storage requirement increases). The algo-
rithm notation is: Ny is the number of ¢ values in vector ¢,
Ny is the number of 0 values in vector 0, N, is the number
of r values in vector r and 7, is the radius of the near-field.
Two weighting matrices are calculated a priori:

» W, with dimension 2 x N;, x Ny: for cos({) and sin({),
vary ¢ € [, 7] and integrate out 6 € [0,7/2]! and r €
[0,71].

« W, with dimension 2 x Nj, x Ny x Ng: for cos({) and
sin(§), vary ¢ € [—, 7] and vary 6 € [0,77/2]! and inte-
grate out 7 € [0,r,¢] .

The weighting matrices W and W, are calculated only
once for a given array and frequency. The steps of the algo-
rithm are:

e Calculate

fio i 1

W1 lp, )+S(Bp)wl(27p7k)]7
(0)

fork=1,...,Ny. Find the peak of f| and the correspon-
ding index iy of ¢.
* Use index iy to fix ¢ and find the peak of

Ny
Z[ Wz (1,p,ig,k)

+S(B,)Wa(2,p,ip, k)|, (1)

fork=1,...,Ng. Find the peak of f, and the correspon-
ding index ig of 6.

* Use iy and ig to fix ¢ and 0, respectively, and use one di-
mensional classical delay beamforming imaging to obtain
a value for r. If the recovered value is not close to 1, re-
turn to the first step and choose the next highest peak (and
repeat this N; times until the threshold is met or there are
no more peaks).

The position obtained is just an estimate and the accuracy
is dependent on how low the side lobe levels are. This met-
hod only needs to search an (N, + Ny + Ny) array N; ti-
mes, while 3D MUSIC must search a 3 dimensional grid
(N, X Ng x Ny). In the simulation results it is shown that N;
is almost always equal to 1.

3.3 Stage 3: Minimum Error Convergence

The proposed convergence algorithm uses the same con-
cepts as those found in [9] which are used for antenna po-
sition calibration. The core idea is that a(v)a® (v) can be
linearised if the error of the estimate of vy is sufficiently

!Only one hemisphere needs to be considered for an Earth based array.

small. If it is assumed that the effect of G(V;) can be dis-
counted and only one source is present then

21V
IW == = (Vs = ill = [[vs = Vel )+ 27mge, (8)

where m ji is an integer that represents the phase ambiguity.
Let6; = Vi —v;, where v{ is an estimate of the RFI position
and let the error € = v — v, (assumed small). Then the
Taylor expansion yields

Vs =il =118~ &ll = /18,1 +[¢] > ~ 26, -

é;-¢
~ 18,1l = 15 ©)
7 llagl|
Using the approximation in equation (9), define
5 &
B, = ( ] + )'8
! 18,11 18]l
12nv
N4 (118511 - uaku] 1
Wjie J oy (10)

which only holds if € is sufficiently small so that the phase
ambiguity m  is zero. By stacking the transposed rows of
the top triangular part of B, an N}, X 1 vector can be created

b =Me, an

where M is an N, x 3 matrix consisting of the stacked
(H_Ts\,\ + Hg—zu) vectors. Equation (11) is then used to de-
J
fine the least squares (LS) problem € = argmin||b — Meg||.
€

The optimal solution in an LS sense is then
€ = (MIM)~'M*bp. (12)

When equation (12) is used to calculate & iteratively and
the estimate v? := v? — € is updated, the estimate v¢ will
converge to v, if the initial estimate for v, is within the main
lobe of the beamformer.

4 Simulation in the Near-field

To evaluate the proposed algorithm, a simulation was done
using the layout of the 48 coplanar antennas from the LO-
FAR CS302 station Low Band Antenna (LBA) subsystem
(see figure 1). A uniform distribution was used to generate
5000 random source positions which lie outside the afore-
mentioned array, but within the array near-field. From the
positions, covariance matrices were generated and the algo-
rithm was applied to each one. For only 2.1 % of the co-
variance matrices did the integrating-out-variables method
have to iterate more than once.

For 95 % of the runs, the algorithm took less than 1.5 s (the
median of all runs was 1.16 s and the maximum 9 s). This
gives a speed-up in the order of 8000 compared to the 3D
MUSIC method when both methods were run on the same
hardware, had the same resolution and were not paralleli-
sed.
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Figure 1. Array layout of the LOFAR CS302 Low Band
Antenna subsystem.

To measure the accuracy of the algorithm, the euclidean
distance (now called the distance error) between the posi-
tion of each source and its corresponding estimated position
was calculated. The integrating-out-variables stage yielded
a median distance error of 2.19 m with a median average
deviation of 1.19 m (see figure 2). After the convergence
stage, the median as well as spread of the distance errors
are drastically reduced to effectively 0. Only 1.24% of the
distance errors are non-zero, however all are smaller than
3.2 m. These outliers all lie within 0.06 rad of the horizon,
lie further than 170 m from the array centre and the error
appears in the z direction (the direction orthogonal to the
plane that the array lies in). This occurs because the array
is planar and therefore has less resolution in the z direction
for sources further away from the array and closer to the
horizon (a similar loss in accuracy also occurs when using
the 3D MUSIC algorithm).
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Figure 2. Relative frequency histogram of the distance er-
ror before the convergence stage for 5000 runs.

5 Conclusion

A new near-field localisation algorithm for interferometric
arrays with low array beam side lobes is proposed. The
algorithm is validated using simulations and has a similar
accuracy to the 3D MUSIC algorithm. The advantage of

the proposed algorithm is that the computational complex-
ity is reduced from & (N, x Ng x Ny) to (N, + Ng + Ny ).
The drawback is that the algorithm introduces weighting
matrices that have to be calculated once a priori and stored.
The algorithm has the same accuracy as 3D MUSIC. These
results strongly indicate the accuracy and precision of the
proposed algorithm to locate RFI sources.
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