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Abstract 
 

In this paper we use Support Vector Machines (SVM) to 

aid breast cancer diagnosis using the microwave imaging 

radar prototype from the University of Bristol. We extract 

features from the electromagnetic signals collected with a 

microwave imaging system and classify them with a SVM 

classifier. The classifier will give an indication on whether 

the electromagnetic signals are more likely to belong to a 

focal point in the breast corresponding to healthy tissue – a 

“miss” – or to tumour tissue – a “hit”. The proposed work 

has the potential to ultimately aid microwave imaging and 

help avoid false positives and detect tumours that were 

imaged as false negatives. 

 

1. Introduction 
 

Previous studies have addressed the use of classifiers to 

determine whether high scattering regions obtained by 

radar microwave imaging of the breast correspond to 

benign or malignant tumours. Several algorithms have 

been used for this purpose, including Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis, 

Support Vector Machines (SVM) [1], Spiking Neural 

Networks [2] and Self-Organising Maps [3]. Other studies 

have also looked at classifying whether a breast is healthy 

or has any tumours [4, 5]. 

This paper extends our previous work in [6] in which we 

used Linear Discriminant Analysis to assess the 

backscattered electromagnetic signals recorded with a 

multistatic radar microwave imaging prototype ahead of 

using imaging beamformers to reconstruct the energy 

profile of the breast. Each synthetic focal point of the breast 

profile will be calculated as the probability of tumour 

occurrence, hence creating a “probabilistic map” of the 

breast. We extend our previous work by using a machine 

learning algorithm – SVM – as the classifier in this study, 

and by applying a threshold to our “probabilistic map” so 

that we have a binary map of the breast that includes only 

healthy and tumour tissue. 

The materials used are presented in section 2, the 

methodology is presented in section 3, the results are 

presented in section 4 and conclusions in section 5. 

 

 

 

 

 

2. Materials 

 

2.1 Microwave Imaging System Description 
 

We used a Microwave Imaging prototype system, 

described elsewhere [7]. This system includes a Rohde-

Shwarz ZVT 8 port VNA – operating in the 3-8GHz 

frequency range – and a conformal array of 60 wide-slot 

antennas embedded in a low-loss matching ceramic shell. 

A total of 36 breast phantoms were tested in this system for 

this study. Each receiving antenna m recorded the 

electromagnetic signals (𝐸𝑛𝑚)  transmitted by each 

transmitting antenna n. The skin was removed via a 

differential measurement acquired with signals collected 

after a 10º rotation of the phantom on the prototype. 

 

2.2 Phantoms 
 

All 36 breast phantoms were developed with layers of 

Tissue Mimicking Material (TMM), which exhibit similar 

dielectric properties to the internal breast tissue. The skin 

was considered as an evenly distributed layer of TMM with 

a thickness varying between 1 and 3 mm. Each breast 

phantom contains different tumour phantoms (which can 

have different sizes, location and number) filled with 

heterogeneous and/or homogeneous TMM. The breast 

phantoms were completed with a chest-wall TMM – a 

liquid which was mantained at the base of the breast 

phantom.  

The dielectric properties at 6 GHz for each TMM layer are 

approximately the following: 𝜀𝑟 = 30 and 𝜎 = 4 𝑠/𝑚 for 

the skin; 𝜀𝑟 = 50 and 𝜎 = 7 𝑠/𝑚 for the tumour tissue; 

𝜀𝑟 = 30  and 𝜎 = 3.9 𝑠/𝑚  for the heterogeneous breast 

tissue; and 𝜀𝑟 = 9.3  and 𝜎 = 0.22 𝑠/𝑚  for the matching 

liquid. 

 

 

3. Methodology 
 

The model considered in this study contains a total of 1558 

Synthetic Focal Points (SFPs), extracted from a total of 

1,925,455 measurements of “hits” and “misses” on 36 

different phantoms. 779 of these SFPs are “hits” and the 

remaining SFPs are “misses”, as represented in the 

synthetic breast model in Fig. 1. 

Twenty-four features were extracted from the measured 



data of each focal point and a SVM classifier was used to 

distinguish “hits” and “misses”. 

The dataset was then divided into training and testing sets 

and using cross-validation. A k-fold cross validation with 

k=10 was implemented and the calculated metrics 

correspond to the sum of the classification results for each 

fold. The classification performance was evaluated by 

metrics such as accuracy, sensitivity, specificity, positive 

predictive value and negative predictive value. 

SVM classifier maps the input vectors (i.e. the 24 features 

for each focal point) into high-dimensional feature spaces 

according to the chosen kernel, creating a hyperplane that 

separates the data into classes. The kernel considered in this 

study was the Radial Basis Function (RBF) which has a 

scaling factor 𝛾  which needs to be optimised for each 

dataset. There is also another important parameter of SVM, 

usually represented with 𝐶, which is a penalty parameter of 

the error term. Both 𝛾  and 𝐶  need to be optimised to 

guarantee good classification results. We performed a 

parameter grid-search [8] to optimise the parameters 𝐶 and 

γ for the present database. We compared the performance 

metrics with several combinations of 𝐶 and γ, and 𝐶 = 2 

and 𝛾 = 4  were found to yield the best classification 

results. 

For each focal point, the SVM classifier returns a 

classification value which we normalised from 0 to 1. We 

have both binary and regression results. For binary results, 

we apply a threshold of 0.5, and so any classification value 

below 0.5 becomes “0” (which represents “miss” or a 

healthy point), or else it becomes “1” (which represents 

“hit” or a tumour point). The regression results have all 

values ranging between 0 and 1. 

 

4. Results 
 

The reconstructed profile of the synthetic breast model 

considered was the same used in [6]. The results of SVM 

classifier are shown in Fig. 2 (binary results) and Fig. 3 

(regression results). 

 

 

 
Figure 1. An example of a “hit” and a “miss” synthetic 

focal point in the synthetic breast model. Orange and 

yellow pixels represent true “miss” and “hit” SFPs, 

respectively. 

 

 
Figure 2. Reconstructed profile of the synthetic breast 

model using the SVM classifier in the binary mode. Orange 

and yellow pixels represent the classified “miss” and “hit” 

SFPs, respectively. 

 

Figure 3. Reconstructed profile of the synthetic breast 

model using the SVM classifier in the regression mode. 

Orange and yellow pixels represent the classified “miss” 

and “hit” SFPs, respectively. 

 

5. Conclusions 
 

In general, the approach with SVM classifier presented in 

this paper outperforms the regression classification results 

with LDA, presented in [6], and will be considered in future 

related work.  
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