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Abstract 
 

We propose a new approach to the retrieval or 
synthesis of continuous sources having a circular support 
and generating a given shaped power pattern. The 
framework can be applied for whatever (asymmetrical) 
distribution exhibited by the measured or desired power 
distribution. The method relies on overlooked tools from 
the aperture antenna theory as well as from known tools 
for array antenna synthesis. 
 
1 Introduction 

 
The design of array antennas and continuous aperture 

sources radiating shaped beams is a very long-standing 
subject in antenna synthesis [1]-[15]. A strictly related 
problem, which is also known as ‘Phase retrieval’ (PR), is 
that of retrieving a source from phaseless measurements 
of its near or far field. In the following, we mainly focus 
on the second of the two problems, i.e. PR, which arises 
in many areas of applied Sciences such as optics, electron 
microscopy, antennas, and crystallography (see [4] and 
the references cited therein). 

The large number of design procedures which tackled 
such a problem proposed very many different ways in 
order to simplify it, including the exploitation of (just to 
cite a few): real field distributions [12], superimposed 
pencil beams [1], iterative FFT via virtual active element 
pattern expansion [11], a semidefinite relaxation of the 
unknowns [8], sequential Convex Programming (CP) [7], 
and power-pattern roots manipulation [14]. 

A related well-known approach is the Spectral 
Factorization (SF) technique, which was first developed 
in [2] and then extended to arrays being either isophoric 
[9] or fed by even excitations [3], to circularly-symmetric 
continuous sources [9], and to equispaced arrays having a 
high beam efficiency [10] or a rhombic equispaced layout 
[5]. As a matter of fact (see [13] for more details), the 
advantage provided by SF with respect to common 
approaches dealing with the mask-constrained power 
synthesis is the capability of: (i) ascertaining a-priori the 
actual feasibility of the problem, (ii) finding all the 
possible different array-excitation or aperture-field 
solutions, and (iii) casting the overall problem as a Linear 
Programming (LP) one plus a polynomial factorization. 

Unfortunately, all the SF-based techniques published 
up to now (as well as most of the methods recalled above) 
exhibit a quite important limitation, i.e., they cannot be 
used every time the sought power pattern cannot be 

written in terms of a 1-D trigonometric polynomial. This 
is indeed the case in many important applications 
requiring, for instance, a source being neither one-
dimensional nor circularly-symmetrical [13]. 

In the attempt of filling such a gap, this contribution 
deals with the PR of sources having a circular support 
from the square amplitude of its complex far field. The 
problem is cast in such a way to take advantage from all 
of the SF characteristics, while allowing the retrieving of 
generic planar continuous sources exhibiting no particular 
symmetries. This is possible by jointly exploiting the SF 
framework, the aperture antenna theory, and the 
electromagnetic field expansions reported and applied in 
[16],[17]. 

In the following, the proposed approach is presented 
in Section 2 and assessed in Section 3. Conclusions 
follow.  
 
2 The Proposed Approach 
 

The approach fully relies on the aperture antenna 
theory and, more in particular, on the expansions and 
formulas given in [17]. By virtue of those results, by 
denoting with (𝑘#, 𝜙) and (𝜌#, 𝜙#) the radial and azimuth 
coordinates, respectively, in the spectral and spatial 
domains, the Fourier transform of a generic source 
𝑓(𝜌#, 𝜙#)  having a circular support of radius a can be 
expressed as (apart from unessential factors): 
 

	𝐹(𝑘#, 𝜙) =

=
1
2𝜋/ / 𝑓(𝜌#, 𝜙#)𝑒123454 6789:41	:;𝜌#𝑑𝜌#𝑑𝜙#									(1

=

>

?@

>
) 

Moreover, the following relationships hold true [17]: 
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where β=2π/λ is the wavenumber (λ being the 
wavelength) and 𝑘# = √𝑢? + 𝑣? =βsinθ (u=βsinθcosϕ, 
v=βsinθsinϕ), θ representing the aperture elevation angle 
with respect to the boresight. Finally, in (4) and (5) Jℓ is 
the ℓ-th order Bessel function of first kind, and Hℓ denotes 
the Hankel transform of order ℓ [16] of 𝑓ℓ(ρ’). 

Note that in (2) and (3) the summation has been 
truncated by following the rules reported in [17],[18]. In 
particular, L is slightly larger than βa. It is also worth 
noting that the multipole expansions (2) and (3) allow 
expressing fields and sources having any azimuthal 
behavior, thus overcoming the limitations listed in Section 
1. For example, ℓ=6 and ℓ=0 could be selected (see also 
[19]) in order to generate source having a hexagonally-
symmetric behavior. 

Notably, by virtue of the results in [2],[18], since the 
power pattern is a bandlimited function having twice the 
bandwidth of the corresponding complex field 
distribution, the square amplitude of (3) can be written as 
a linear combination of 4L+1 complex coefficients, say 
𝐷1?C(𝑘#), … , 𝐷>(𝑘#), … , 𝐷?C(𝑘#), i.e.: 
 

																				𝑃(𝑘#, ϕ) = A 𝐷X(𝑘#)
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By straightforward derivations, expression (6) can also be 
analyzed as the restriction to the unit circle of a 
polynomial in the complex variable z= 𝑒2Z  [2]. As 
𝑃(𝑘#, ϕ)	must be a real and non-negative function, one 
also has: 
 

																		𝐷X(𝑘#) = 	𝐷1X∗ (𝑘#)					𝑝 = 1,… , 2𝐿					∀𝑘#						(7) 
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* meaning complex conjugation. 
In case of PR problems, the power pattern 𝑃(𝑘#, ϕ)  is 
derived from measurements. Under such assumptions, the 
overall procedure consists of the three following steps: 
 

1. Determine the complex coefficients 𝐷X(𝑘#) in such a 
way that the representation (8) matches the given 
power pattern 𝑃(𝑘#, ϕ) and the properties (7) and (8) 
are satisfied; 
 

2. once the 𝐷X(𝑘#)are obtained, determine the 𝐹ℓ(𝑘#) 
functions (see the following); 
 

3. apply (2) and (4) to the identified 𝐹ℓ(𝑘#) functions 
and determine the source distribution 𝑓(𝜌#, 𝜙#). 

 

Notably, step 1 amounts in solving a LP problem, with the 
inherent advantages in terms of computational burden and 
optimality of results. Conversely, step 2 is the most 

difficult part of the problem. In order to solve it, at least 
two different strategies may be pursued, as detailed in the 
following. 

A first possibility relies on the fact that, since it is 
𝑃(𝑘#, ϕ) = 	 |𝐹(𝑘#, 𝜙)|?, 𝐹ℓ(𝑘#) can be retrieved for each 
fixed value of 𝑘d#  by factorizing (6) into two complex-
conjugate factors, i.e., 
 

																									𝑃9𝑘d #, ϕ; = 	𝐹9𝑘d #, 𝜙;𝐹∗9𝑘d#, 𝜙;																(9) 
 

in exactly the same way as in [2]. Notably, the solution to 
each of these problems is not unique, so that, by reasoning 
as in [20], one has to make some selection in order to 
provide a congruence amongst the solution selected for 
each value of k’.  

A second possibility relies on the fact that, since it is 
𝑃(𝑘#, ϕ) = 	 |𝐹(𝑘#, 𝜙)|?, the coefficients 𝐷X(𝑘#) represent 
the autocorrelation of 𝐹ℓ(𝑘#) and hence the following 
relationships hold true ∀𝑘#: 
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𝐷1?C(𝑘#) = 𝐹1C(𝑘#)𝐹C∗(𝑘#)					

				(10)  

 

Then, one has to solve the above set of equations in 
the unknowns 𝐹ℓ(𝑘#). In so doing, one can take advantage 
of the expected properties of 𝐹ℓ(𝑘#) and 𝐷X(𝑘#) (i.e., each 
of these functions has a zero of order ℓ in the origin [17]). 
Moreover, a relatively simple solution approach is viable 
in case 𝐹ℓ(𝑘#) = 𝐹−ℓ(𝑘#) . In fact, under such an 
assumption, the first equation can be solved by 
performing a 1-D spectral factorization (along the 
guidelines in [2]) and the resulting solutions can be 
substituted into the subsequent equations.  
 
3 Numerical Results 
 

In order to present a preliminary assessment of the 
proposed approach, we performed the PR of field being 
even with respect to the v axis and radiated by a circular 
aperture of radius a=1.25λ.  

The reference and retrieved power patterns are shown 
in Fig. 1.  The first equation in (10) has been optimally 
solved by representing 𝐷?C(𝑘#)	 as a trigonometric 
polynomial. Then, the latter has been factorized in such a 
way to determine 𝐹C(𝑘#) . Finally, the subsequent 
nonlinear equations in (10) have been simultaneously 
solved through the fsolve function of Matlab in order to 
determine the unknown functions 𝐹ℓ(𝑘#)  ( ℓ = 𝐿 −
1,… ,0). As it can been seen in Fig. 2, the reconstructed 
functions 𝐷l(𝑘#)	 result essentially equal to the ones 
associated to the reference pattern. 

The reported result, as well as the others which will be 
shown during the conference, confirm the interest of the 
proposed approach. The runtime for the overall procedure 
turned out to be less than 2 minutes (by using a computer 
equipped with a 2.21 GHz CPU and 16GB of RAM 
memory). 



 
4 Conclusions 
 
A new approach, relying on the aperture antenna theory, 
the spectral factorization, and a multipole expansion of 
the far-field and source distributions has been devised for 
the problems of retrieving or synthesizing sources having 
a circular support generating given (power) shaped 
beams. 
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