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Abstract

We investigate quantum information preserving computa-
tional electromagnetics. To do so, we propose two differ-
ent methods which are (1) numerical canonical quantiza-
tion and (2) quantum finite-difference time-domain scheme.
The proposed algorithms find numerical solutions of quan-
tum Maxwell’s equations involved in arbitrary inhomoge-
neous dielectric media based on the macroscopic theory on
quantum electrodynamics; hence, they are useful to study
the quantum nature of electromagnetic fields in arbitrary
passive and lossless quantum optical instruments. We pro-
vide a numerical example associated with two photon inter-
ference occurring in a quantum beam splitter, which is the
underlying principle of recent quantum technologies.

1 Introduction

The recent advent in quantum computing spells the begin-
ning of an exciting era for quantum technologies. Mathe-
matical modeling of physical phenomena and their numeri-
cal simulations have transformed classical electromagnetics
technologies. But such knowledge base is still in its infancy
for quantum Maxwell’s equations and quantum technolo-
gies. Historically, after the discovery of the quantum na-
ture in atoms, the development of quantum optics has been
triggered by Dirac and is still under active investigation un-
til now. It mainly deals with the physics of single photon,
which has energy quanta. It carries the quantum informa-
tion while riding on electromagnetic (EM) fields. As a re-
sult, EM fields are to be also quantized in the sense of the
quantum mechanics. Their quantum elevation is typically
done via the (monochromatic) mode decomposition picture.
Called canonical quantization, it uses a complete basis set
to spatially separate total fields on Fourier space. As such
that classical field amplitudes are simply replaced by oper-
ators acting on wavefunctions of photons. One of most im-
portant examples showing the quantum nature of EM fields
is a quantum beam splitter. It is obvious that the determinis-
tic behavior is present in a classical 50/50 beam splitter that
evenly divides input light beam into two reflected and trans-
mitted beams simultaneously measurable at output ports.
Every single photon passing through a quantum beam split-
ter, however, randomly arrives at one of two outputs, as il-
lustrated in Fig. 1. This bizarreness has been manifested in
experiments by Grangier and Hong-Ou-Mandel.

In this conference paper, we explore using computational
electromagnetic techniques (CEM) to capture and charac-
terize the quantum nature of quantum beam splitters. It
should be mentioned that recent efforts [1] sought to build
bridges between the engineering and physics community
to foster cross pollination. This work is along the same
line of [1] but with more focus. Specifically, we pro-
pose (1) numerical canonical quantization and (2) quan-
tum finite-difference time-domain (Q-FDTD) scheme. The
former method is the extended version of standard canoni-
cal quantization where now modes are formed numerically
instead of using Fourier modes. In other words, it quan-
tizes EM fields in the presence of arbitrary inhomogeneous
dielectric media. Therein, instead of finding ad-hoc nor-
mal modes in closed form, we numerically solve the cor-
responding Helmholtz wave equation on a given mesh by
using either finite-difference/-element methods with Bloch-
periodic boundary conditions. For the latter, on the other
hand, we look at the quantum nature of EM fields from a
different angle, i.e. in the coordinate picture, to develop
a time-domain quantum Maxwell solver. In the Heisen-
berg picture, quantum Maxwell dynamical operators are ex-
panded by a set of ladder operators defined in the coordinate
space while non-orthogonal basis corresponding to a new
type of propagators which are different from the classical
Green’s function. In particular, the proposed time-domain
quantum Maxwell solver is useful to study the local prop-
agation of quantum information such as virtual photons or
near single photon sources. Using both methods, we pro-
vide numerical simulation results associated with two pho-
ton interference occurring in a quantum beam splitter.

2 Numerical canonical quantization

For a 1-D periodic box including arbitrary dielectric ob-
jects, singly-linearly-polarized vector potential operators
can be represented by using a countably-infinite number of
normal modes for the system [2,3] as
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where dummy integer p denotes normal mode index,
¢P) (x) is p-th normal mode, @, and k, are eigen-
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Figure 1. Schematics for classical and quantum beam splitters for various input scenarios.

frequency and -wavenumber, and 4y, and aA};p are annihi-
lation and creation operators in the mode space, respec-
tively. The normal modes are solutions of the Helmholtz
wave equation with the use of the generalized transverse
gauge which is given by
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where the dielectric inhomogeneity is incorporated into
€(x). The ladder operator is to be acting on a quantum
state which can be made by the linear superposition of mul-
timode Fock states.

One can numerically solve (4) by using either finite-element
or finite-difference methods for a given mesh. The discrete
counterpart of (4) can be written by
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where S and M are stiffness and mass matrices which are

Hermitian, ® and A are matrices including a set of eigen-
vectors and eigenvalues whose elements are given by
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Note that the total number of eigenvectors and eigenval-
ues is determined by the total number of grid points. With
the use of Bloch-periodic boundary condition, numerical
normcal modes can be complex-valued, i.e., in the form of
traveling waves. Consequently, the corresponding vector
potential operators can be expanded by a countably-finite
set of numerical normal modes and written in the matrix
representation as
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where ¥ denotes Hermitian conugate,
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We call this numerical canonical quantization which allows
one to obtain Maxwell dynamical operators for arbitrary di-
electric inhomogeneous media. More details can be found
in [3].

3 Initial quantum state

An operator itself can have physical meaning only if it op-
erates on a vector. Here, we briefly discuss how to make
a quantum state for a single photon riding on wavepacket.
Due to the bosonic property of photons, one can con-
struct an initial quantum state for a single photon riding on
wavepacket through multimode Fock states as
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where g, is a probability amplitude incorporating the spec-
tral information of a (gaussian) wavepacket and |0) denotes
a vacuum state in the Dirac’s notation. Furthermore, if two
photons are independent (not entangled), their composite
initial quantum state can be given by the tensor product of
each single photon’s quantum state, viz.,

) = lZglak,] [ng ]IO (12)

4 Quantum FDTD scheme

Since the numerical normal modes satisfy the orthonormal
property, which can be written in the matrix representation
as

d M- =1 (13)

where I is identity matrix, one can associate ladder opera-
tors in the mode space with those in the coordinate space
via the unitary transformation

b=M-®-4a (14)
where [b] y= b,,. Substituting (14) into (8), one can repre-

sent the vector potential operator with respect to coordinate-
ladder operators
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Figure 2. Schematic of numerical experiments for two-photon incidence to observe Hong-Ou-Mandel effect.

where
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The function Gy (x;,#) is interpreted as a new propagator
carrying fields through space and time, which are initiated
from a certain grid point x,. This is different from the
classical Green’s function due to the presence of the fac-
tor \/h/(2m,). Since coordinate-ladder operators are not
a function of space and time, vector potential operators is
time-evolving through the new propagator. Hence, by nu-
merically time-evolving the new propagator, one deduces
the time evolution of vector potential operators. Since the
new propagator is a solution of wave equation, one can nu-
merically time-evolve v-th propagator through the follow-
ing Q-FDTD scheme as
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fori=1,2,--- ,Ngandv=1,2,--- N, where N is the total
number of grid points and [Gy]! = Gy (x;,2,). Note that
there is no coupling with respect to different v.

It should be mentioned that since coordinate ladder oper-
ators retain the same properties of mode ladder operators
and commutator relation, one can easily find initial quan-
tum states for coordinate ladder operators by applying the
unitary transformation to (11) or (12).

S Numerical example

Two-photon interference in a quantum beam splitter, called
Hong-Ou-Mandel (HOM) effect, is the underlying princi-
ple of quantum technologies, yielding quantum entangled
states. The more identical the pair of two incident photons
are, the smaller the probability of simultaneous detection
becomes at output ports of quantum beam splitters. Hence,

it implies the degree of indistinguishability of incident pho-
tons in terms of various properties such as frequency, band-
width, time delay, and so forth. Indistinguishability of two
photons is often measured through the degree of intensity
coherence, called second order correlation, denoted as g(z).
It was firstly reported in [4] for the development of ad-
vanced stellar interferometers with classical light beam in-
puts. The quantum version of the second order correlation
function can be deduced from the physical mechanism of
the simultaneous detection of two photons [2]. In other
words, the action of an annihilation operator to a quantum
state resembles absorption of a single photon at a specific
location and certain time instant, viz., the photoelectric ef-
fect. The detailed derivation for the quantum second or-
der correlation function can be found in [S][Chap. 12].
Hence, g is widely used in many quantum-associated ex-
periments to test the indistinguishability of two photons.

To test indistinguishability of two photons, we place two
photodetectors at x; and xp, as illustrated in Fig. 2. Each
photodetector is supposed to detect a photon at a certain
time instant fy = #; and #; + T, respectively. Note that T
is equal to 8xp/c where c is the speed of light. The time
instant g2 can be written as
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We set x; = x, = x9 and x, = x; = —x¢. Note that A, By,
and B, can be explicitly evaluated by using the rule of the
action of ladder operators to number states and commutator
relation.

Fig. 3 illustrates g(z) (1) versus 7 evaluated by using numer-
ical canonical quantization for different grids and numeri-
cal methods. Note that N(©) denotes the total number of grid
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Figure 3. The Hong-Ou-Mandel effect obtained by numer-
ical canonical quantization for different meshes and numer-
ical methods.

points. In both methods, as the mesh becomes more refined,
the dip around 7 = 0 approaches to zero, called HOM dip,
with different convergence rates. This is the clear evidence
of two photons emerging through either output ports while
being bunched since the pair of photons are perfectly iden-
tical; hence, they are indistinguishable. It should be men-
tioned that the HOM dip is usually less than one half, as ev-
idenced in experimental results. This is entirely a quantum
effect and cannot be explained by (semi-)classical theory
that produces the dip always greater than one half depend-
ing on the type of incident fields such as coherent pulses or
chaotic lights [6,7].

Furthermore, for N 0) = 5001, we ran the Q-FDTD scheme
for the same problem. Results are compared in Fig. 4 with
numerical canonical quantization (NCQ) based on finite-
difference method. Note that case 1 and 2 are slightly dif-
ferent in terms of constructing initial quantum states. It can
be seen that there are great agreement among all cases.
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