Embedded Element Patterns in Hierarchical Calibration of Large Distributed Arrays

Stefan J. Wijnholds E-mail: wijnholds@astron.nl

URSI GASS 2020

SKA-LOW and LOFAR

Low-frequency instrument of Square Kilometre Array

50 - 350 MHz

Low Frequency Array

10 - 250 MHz

Array of subarrays (stations)

Array of subarrays (stations)

URSI GASS 2020 - 2 -

Hierarchical calibration

AST(RON

Calibration at station level needed for

- Accurate beamforming
 - Ensures station sensitivity
 - Allows beam shaping, e.g., nulling

Calibration at array level needed for

- High-dynamic range imaging
 - Needs station beam stability
- Absolute calibration
 - Flux transfer from flux calibrators

Embedded Element Patterns

Virone et al., IEEE TAP, 2018 Di Ninni et al., IJAP, 2019

EEPs can be simulated and validated in-situ using drones

Simulation can compute (in order of increasing costs)

- Isolated EEP: EEP of isolated antenna
- Average EEP: average EEP of all antennas in station
- Individual EEPs: different EEP for each antenna within station

Questions

- What is needed for station-level calibration?
- What is needed for array-level calibration?

Derived question

What calibration accuracy is needed?

Gain accuracy and decorrelation

Beamforming efficiency with RMS phase error σ_{ϕ}

$$\eta_{\text{BF}} \, = \, \cos^2(\sigma_{\phi})$$

Implications: $\eta_{BF} \ge \{0.99, 0.98\}$ requires $\sigma_{\phi} \le \{5.7, 8.1\}$ degrees

Beamforming eff. with relative RMS error ε on real and imaginary part

$$\left|\eta_{\text{BF}}\right| = \frac{1}{1 + 2\,\epsilon^2} \approx 1 - 2\,\epsilon^2$$

Implications: $\eta_{BF} \ge \{0.99, 0.98\}$ requires $\epsilon \le \{0.071, 0.10\}$

Impact of beam (in)stability

Array level calibration needs to be able to track dir. dep. gain changes First order model for varying gain of *i*th station $g_i = g_{0,i} + \alpha_i t$ To keep errors below 20% of thermal noise, we need

$$\frac{|\alpha_i|}{|g_{0,i}|} \leq \sqrt{\frac{12}{5}} \frac{1}{\sqrt{\mathsf{SNR}}} \frac{1}{\tau}$$

where τ is the calibration interval in which the given SNR is achieved

Example: SNR = 10 and τ = 600 s allows rate of change of 0.082%/s

Note: time needed to achieve a certain SNR depends on SEFD

Hence: more sensitive instrument (lower SEFD) can keep up with faster gain changes

Impact of ignoring EEPs (1)

Wijnholds, SKA-LOW meeting, Florence, 2019 Haslam et al., A&A Suppl, 1982

Simulation setup for 256-element SKA-LOW station

- Mock data based on simulated EEPs and Haslam map
- Calibration model assuming identical EEPs equal to average EEP
- Nominal gain equal to unity for each element
- 200 scenarios spread over 24 hours (one solution per 7.2 min)
- Simulation done for both SKALA4AL and EDA at 110 MHz
- Gain solutions used to calculate AF for each instant

$$\mathsf{AF}(\mathbf{I};\mathbf{I}_0) = \mathbf{w}^\mathsf{H}(\mathbf{I}_0)(\mathbf{g} \odot \mathbf{a}(\mathbf{I})) = \sum_{p=1}^\mathsf{P} \mathsf{g}_p \exp\left(\frac{-2\pi \mathbf{i}}{\lambda} \mathbf{x}_p(\mathbf{I} - \mathbf{I}_0)\right)$$

Average AF normalized to have unit peak gain

Impact of ignoring EEPs (2)

Left: beam gain variations along cross-section through station main beam with largest variations

Right: rate of change at each point of this cross-section

Conclusion: average EEP sufficient if sky model is correct

Flux transfer requirement

Balancing against absolute flux calibrator accuracy:

- Typical absolute flux accuracy of flux calibrators is ~5%
- Instrument should not be limiting, so LOFAR2.0 has set reproducibility of absolute flux calibration at 2%
- Here, reproducibility applies to the absolute flux calibration in the target field for different calibrators or the same calibrator at different sidereal times
- Assuming error towards calibrator and target field are uncorrelated gives tolerance of 1.4%

Compliance assessment flux transfer Di Ninni et al., EuCAP 2019

AST(RON

Comparison between average EEP and isolated EEP for SKA-LOW Patterns (top) and difference (bottom) at 110 (l) and 350 (r) MHz Differences up to about 3%, average EEP needed to meet requirement

Summary and conclusions

Station level

- Requirement proposed on coherence during beamforming
- Requirement proposed on tolerable rate of change
- Both requirements can likely be met with an average EEP

Array level

- Requirement proposed on reproducibility of absolute flux calibration
- SKA-LOW needs average EEP to satisfy this requirement

Individual EEPs may (fortunately) not be necessary