

Link Budget Design in Land - Atmospheric Communication Links accounting for Buildings' Overlay Profile

Yehuda Ben-Shimol^{*(1)}, Vadim Nenashev⁽²⁾, Nathan Blaunstein⁽¹⁾ and Michail Sergeev⁽²⁾ (1) School of Electrical and Computer Engineering, Gen-Gurion University, Israel, http://www.bgu.ac.il (2) State University of Airspace Instrumentation (SUAI), Sankt Petersburg, Russia

This work is based on recent research on link budget design in wireless land-atmospheric communication links. We account for the effects of shadowing and fading phenomena caused by buildings' overlay profile, their density and spatial distribution above the terrain. The prediction of total pass loss accounts for effects of gaseous structures attenuation and scattering, hydrometeors (rain, snow and clouds) absorption and attenuation, turbulent structures fast fading on radio signals passing atmospheric channels with fading. Additionally, based on the physical-stochastic approach [1], the effects of fading - slow (shadowing) and fast (movements of vehicles), were computed as a sufficient impact in link budget design.

We show that the main effects in link budget design are the buildings' overlay profiles, their density and spatial distribution above the rough terrain with respect to various elevations of stationary ground-based and moving/flying subscribers. We developed an optimal algorithm for predicting the total pass loss for various meteorological situations occurring in the real atmosphere at different heights, for various frequencies of radiated signals, and for different terrestrial channels, mixed residential, sub-urban and urban with various buildings profiles, their density and spatial distribution around the moving and stationary subscriber antennas.

Finally, an advanced approach on how to evaluate and estimate effects of attenuation, absorption, scattering and fading of radio signals propagating in the various land-atmospheric channels in different meteorological conditions, and various types of built-up terrain (mixed residential, suburban and urban) is proposed. Part of the results are shown in Table 1 below.

Dorometer	Link budget in the land atmospheric link [dB]											
1 arameter	$f = 2.4 \mathrm{GHz}$				f = 2.2 CHz				f = 5.2 CHz			
1 . 1 .	J = 2.4 GHZ			J = 5.3 GHz				J = 3.2 GHz				
height	Ikm	5km	7km	10km	Ikm	5km	7/km	10km	Ikm	5km	7km	10km
Freespace	120.00	121.02	121 78	123.06	122 861	123 787	124 55	125 820	126 811	127 737	128.5	120 770
loss	120.07	121.02	121.70	125.00	122.001	123.707	124.55	125.627	120.011	127.757	120.5	129.779
Cloud loss	17.5	2.0	2	25	22	72	57	16	01	10.2	14.2	11.5
$\cdot 10^{-3}$	17.5	5.9	5	2.5	55	13	57	40	02	10.2	14.2	11.5
Molecular	70 7	20.0	00.7	102.2	70.1	96.0	04.0	100.0	00.9	101	0 1 1 0 2	107.0
$loss \cdot 10^{-3}$	12.1	80.9	88.5	102.5	/8.1	80.9	94.9	109.9	90.8	101	0.110.5	127.8
Rain loss	22.0	25.9	777	21.4	17.9	51.2	519	62.1	200.7	211.0	222.2	272.5
$.10^{-3}$	23.0	23.0	21.1	51.4	47.0	51.2	54.0	02.1	290.7	511.9	552.5	572.5
Fast fading												
(turbulence	1.4	1.5	1.6	1.9	1.7	1.8	2.1	2.3	2.19	2.4	2.6	3
weak $\cdot 10^{-3}$)												
Fast fading												
(turbulence	0.312	0.344	0.373	0.427	0.376	0.414	0.449	0.514	0.49	0.54	0.585	0.670
moderate)												
Fast fading												
(turbulence	0.441	0.487	0.527	0.603	0.531	0.585	0.635	0.727	0.693	0.764	0.828	0.948
strong)												
Effect of												
terrain profile												
Small city (1)	6.3	5.5	4.6	3.9	6.3	5.5	4.6	3.9	6.3	5.5	4.6	3.9
Medium city (2)	9.5	7.7	5.8	4.7	9.5	7.7	5.8	4.7	9.5	7.7	5.8	4.7
Large city (3)	14.2	12.9	10.4	8.8	14.2	12.9	10.4	8.8	14.2	12.9	10.4	8.8

Table 1.	Pass	loss	com	ponent	impact	on	link	budget
		.000	• • • • • •	00110110	mpace	~		e a aget

References

[1] Blaunstein, N. and C. Christodoulou, *Radio Propagation and Adaptive Antennas for Wireless Communication Networks - Terrestrial, Atmospheric and Ionospheric* (2nd ed.), Wiley, New Jersey, 2014.