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Abstract

The radiative transfer equation (RTE) for problems involv-
ing scattering, absorption and radiation is solved using the
space-angle discontinuous Galerkin (DG) method in multi-
dimensions from 1D to 3D. The space and angle is fully
discretized by the DG formulation by utilizing the element
extrusion technique. Moreover, the iterative and parallel
scheme is used for the solution process, making the process
in a relatively cheap way.

1 Introduction

Radiative transfer takes place in a wide range of natural
phenomena and engineering applications. The propagation
of radiation in the form of electromagnetic waves through a
medium is affected by absorption, emission, and scattering
processes. The radiative transfer equation (RTE) mathe-
matically describes this interaction, which has a wide range
of applications in such areas as heat transfer, neutron trans-
port, atmospheric science, optical molecular imaging and
some other applications. In the steady state, the RTE is
an integro-differential equation of up to five independent
variables, which are 3 dimensions in space and 2 directions
of the solid angle. The high dimensionality and the inte-
gral term present serious challenges when trying to solve
the RTE numerically. The discontinuous Galerkin (DG) fi-
nite element method (FEM), introduced by Reed and Hill
[1], is one of the most popular grid-based numerical meth-
ods for solving the RTE due to its high order accuracy and
flexibility in mesh grids. The basis functions used in the
DG method are discontinuous across element interfaces; ac-
cordingly, the jump condition between interior traces of so-
lution and the so-called numerical flux is weakly enforced
on the interface boundaries. The space-angle DG method
are specially suitable for the RTE, since the evolution of
solution along characteristics can be strongly discontinuous
in both space and angle.

In our previous work, the RTE for plane-parallel prob-
lems and 2D axisymmetric problems are solved by the DG
method directly [2, 3, 4]. However, a direct solver may
end up with much higher memory usage, when dealing a
higher dimensional problem, such as a 3D problem. To
overcome this issue, an iterative and parallel DG solver with

angular decomposition scheme is applied in this paper to
solve the steady state radiative transfer problems in multi-
dimensions.
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Figure 1. The illustration of the extrusion of the spatial
domain in angle directions ¢ and ¢. The left figure shows
the one-dimensional spatial elements and the right shows
their extrusion to form the three-dimensional domain Q.

2 Radiative transfer equation

The general form of steady-state RTE for a gray medium is

given as,

dI(x,8)
ds

= —BI(x.8)+ kly(x) + 1= f
This equation describes the change of radiation intensity
I(x,8) at spatial location x along the path ds in the angle
space with angle coordinate §. The values 8, k, and O,
are the spatial-dependent extinction, absorption, and scat-
tering coefficients, respectively. The anisotropic scattering

1(x,8")®(8,8")ds’ (1)



phase function is represented by ®($,§) and s’ is the solid
angle for phase function integration. The solid angle differ-
ential for s’ is denoted by ds’. The spatial-dependent total
black-body radiation intensity is given by ;. For problems
in different dimensions or different coordinate systems, the
left hand side term of Eqn. 1, dI(x,8)/ds, is different. In
this paper, we are focusing on the problems in 1D cylindri-
cal coordinate and 2D and 3D Cartesian coordinate in space
and 2 directions in angle.

3 DG formulation

To implement general RTEs, the software written by us sup-
ports the extrusion of a 1D to 3D spatial domain, discretized
by simplicial elements, into arbitrary number of extrusions
in angle. To implement general RTEs, the software written
by us supports the extrusion of a 1D to 3D spatial domain,
discretized by simplicial elements, into arbitrary number of
extrusions in angle. Figure 1 illustrates how the space-angle
mesh is generated for a 1D spatial mesh extruded in two an-
gular directions, as an example. The 1D simplicial spatial
elements (lines) on the left are extruded first to the 9 once-
extruded simplicial elements (squares) in the » — ¢ plane
and next to twice-extruded simplicial elements (cubes) in
Q. The above RTE can then be discretized over a space-
angle finite element domain.

In a DG formulation, residuals (errors) must be specified
both in the interior and on the boundary of elements. The
weighted residual (WR) of the finite element formulations
formed by multiplying the RTE (Eqn. 1) by the weight
function H,
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where Q is the element, dQ is the element boundary, n is
the normal vector of the element facet. The numerical solu-
tion 7 used in DG method for each space-angle element Q
is defined by I’é = fo -a, where Hg is the tensorial product
monomials within element Q and a is the unknown vector
for element Q. The term (I*—1I)§-n is the jump condi-
tion which weakly enforces the continuity between each
element. Each of the above terms are placed into a lo-
cal stiffness and force tensor which is then transferred to
a global stiffness K matrix and force F vector in the equa-
tion: Ka =F. The unknown vector a can be obtained by
the direct solution of this linear system.

4 Iterative and parallel implementation

Directly solving the system requires dealing a large stiff-
ness especially for the multi-dimensional RTEs with the an-
gular integration term. As the angular decomposition (AD)
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Figure 2. Sparsity pattern of the stiffness matrices in a
4 x 4 x 4 domain. The global stiffness is in blue; the sub-
domain matrices are in red.

is applied, meaning the space-angle domain is sliced along
the angle direction and divided into several sub-domains,
each sub-domain can be solved separately. The the global
stiffness is then split into K = A + B, where A is the global
matrix from sub-domain stiffness and B is the stiffness con-
tributions by the angular integration term in Eqn. 2. In-
stead of solving Ka = F, A is used as the approximate stiff-
ness, and B is moved to the right hand side, Aa = F — Ba.
This significantly reduces the degrees of freedom within
a slab and makes the stiffness sparser. For example, Fig-
ure 2 shows the sparsity patterns of a global stiffness and
sub-domain stiffness matrices. Subsequently, the domain
is solved iteratively by updating the solution of each sub-
domain until the residuals of the solution R, at step n in
all slabs converge to zero. Conceptually, the solution is ex-
pressed as a series,

a1 =A"'(F —Bay), 3)

However, the solution does not converge if the spectral ra-
dius of BA™! is greater than 1. Inspiring by the Newton-
Raphson method, a relaxation factor o can be provided to
help establish convergence for possibly divergent Eqn. (3).
The solution of the modified iterative scheme is expressed
as,

a1 =0A 'F+[(1—a)I—aA 'B]a,. 4)

Where I is the identity matrix. The relaxation factor o
is chosen small enough to ensure the spectral radius of
(ot —1)I+ oA~ !B be less than 1. The iterative scheme and
the determination of the relaxation factor is expected to be
discussed in more detailed in subsequent publications.

The parallel process is based on the iterative scheme. Fi-
ther the angular decomposition (AD) or the domain decom-



position (DD) is used to partition the domain into n sub-
domains [5]. Figure 3 illustrates the space and angle par-
titioning. For the AD method, as shown in Figure 3, the
angular mesh is sliced into 4 sub-domains represented by 4
different patterns and assigned to 4 MPI processes, respec-
tively. The processes solve the sub-domains individually,
while a shared memory of accessing the information at each
quadrature point is required to update the solutions for each
iteration. For the DD method, the spatial mesh is divided
into 4 sub-domains in different colors. The angular mesh in
each sub-domain has to be same in order to communicate
through processors. All the 4 sub-domains are assigned to
a 4 MPI processes to solve the RTE in the sub-domains si-
multaneously. For each sub-domain interface, target values
are the upstream values depending on the previous iteration
from its neighbor sub-domain. In practice, after solving the
RTE in the sub-domains, the solutions on the sub-domain
interface are simply swapped. The iteration steps depend
on the number of MPI processes. If 4 MPI processes are
used, 3 iteration steps are required.
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Figure 3. A schematic of the DD method and AD method.

5 Numerical examples

5.1 Code verification

Verification of the code is carried out using the Method of
Manufactured Solution (MMS). In the MMS, an exact solu-
tion is given as an extra source term in the interior residual
of the DG formulation. If the MS space belongs to the space
of finite element solution. When the MS is a polynomial
of order equal or less than that used to interpolate the trial
solution, I, the exact solution is recovered. Otherwise,
asymptotically converges to the exact solution. Both direct
and iterative 1D to 3D RTE solver are manage to capture or
converge to the exact solution.

5.2 1D cylindrical example

According to Eqn. 2, the WRS of 1D cylindrical RTE, de-
pending on r in space and the cosine of polar angle u =

cos 0 and azimuthal angle ¢ in angle, is derived by provid-

ing the formulation of d/(x,8)/ds = sin 6 cos (ﬁw —

sin6sin ¢ M as mentioned Sec. 2
. 5 2.

In this example, inner and outer radii are Ry = 1, Ry = 2,
B =1, and o, =0.1. & =1 corresponds to isotropic scat-
tering. The inner surface is hot (77 = 2000K) and highly re-
flective (&1 = 0.1); the outer surface is relatively cool (7 =
400K) and is a strong absorber (&, = 0.9). A 16 x 16 x 16
grid with polynomial order p = 1 is used for the DG solu-
tion. For the iterative solver, the AD scheme is used to slice
the domain in to 16 sub-domains, while only applied in u
direction to avoid additional interface communication in ¢
direction. The result is shown in Figure 4. Compared to the
direct solver, the iterative solver uses the memory 80% less
than the direct solver.
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Figure 4. Contour plot of radiation intensity of the bench-
mark problem for R; /Ry = 0.5 and 7, — 7; = 10.

5.3 2D rectangular enclosure

A benchmark problem of an anisotropically scattering
medium in a rectangular enclosure is investigated. The left
hand side of the RTE, Eqn 1, in 2D Cartesian coordinate is
written as,

dI(x,8)
ds

= \/l—uzcos(pﬂ—i- l—uzsin(pﬂ.
ox dy

The size of the rectangle is 1 x 1. The isotropic incident
radiation on the left boundary is / = 1. The intensity re-
mains 0 on the rest boundaries. The Rayleigh phase func-
tion is employed in this problem, where phase function

D(u, @1, @) is given,
D(u,,u', ") =
3 2
4{1+{ (luz)(lu’z)cos(wfp’)wu’} }

The extinction coefficient is § = 1. The scattering coeffi-
cientis oy = 0.5. The result is shown in Figure 5 in different
directions.



Figure 5. Contour plot of radiation intensity of the bench-
mark problem at four different directions.

5.4 3D idealized furnace model

The left hand side of 3D RTE in Cartesian coordinate is,
dI(x,8)

ds

al al al
— 2 o — 2sino L a
VvV1i—u cos P +vV1i—u s1n(pay+uaz.

A 3D idealized furnace model is conducted. The size of the
rectangular cuboid is 2m x 2m x 4m. The enclosure is filled
with an absorbing-emitting medium with 8 = x = 0.5m~!.
An additional heat source in the furnace is considered,
g = 5kW /m3. The boundary condition are T(;—0) = 1200K,
T(z:4m) = 400K, other T = 900K. The solution is obtained
using 563 tetrahedra spatial elements an extruded angular
mesh 20 x 20 with polynomial order 0. The result is shown
in Figure 6.

6 Conclusions

This paper has presented an iterative DG method for the
numerical solution of the steady-state RTE from. The DG
formulation is derived from the general RTE in both space
and angle which can be easily derived in different coordi-
nate systems and dimensions. The iterative solver signifi-
cantly makes the stiffness matrix sparser, while remain the
same accuracy as the direct solver. Moreover, the iterative
scheme makes the parallel process easy to implement. Al-
though the benchmark problem taken for examples are rel-
atively simple, the benefits of our algorithm will be more
pronounced for more complex problems.
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Figure 6. Contour plot of temperature field of the bench-
mark problem at the cross sections z = 0.4m, z = 1.2m,
z=2m, and z = 3m.
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