URSI GASS 2021, Rome, Italy, 28 August - 4 September 2021

On the Inclusion of Thin Sheets in the Global Multi-trace Method

S.0. Lasisi*(), TM. Benson"), M.T. Greenaway®), G. Gradoni(!), and K. Cools®)
(1) University of Nottingham, Nottingham NG7 2RD, United Kingdom
(2) Delft University of Technology (TU Delft), Delft, The Netherlands
(3) Loughborough University, Loughborough LE11 3TU, United Kingdom

Abstract

In this paper, a global multi-trace method for the scattering
of time-harmonic waves by a structure that can contain, in
addition to dielectric and perfectly conducting regions also
perfectly conducting thin sheets, is presented. The method
is direct in the sense that the unknowns are traces and jumps
of the fields in the structure. The flexibility of the method
and the correctness of the solution will be demonstrated by
realistic examples.

1 Introduction

Electromagnetic scattering involving composite objects
made up of several layers of metallic and penetrable mate-
rials are time and again encountered in practical engineer-
ing problems. For example, in electronics, aerospace and
defence, thin metallic sheets (so-called ’shielding sheets’),
or coatings are often used to provide strong protection
for electronic devices from undesirable electromagnetic
interference[1]. Modelling geometries of this nature how-
ever poses a challenge as special care and attention must
be paid to the electromagnetic traces at the junctions where
two or more materials meet.

Domain decomposition boundary element methods (DD-
BEM) provides an appealing approach for dealing with
such scattering problem involving multiple media or do-
mains. Here the composite structure is partitioned into
several sub-domains and the interaction between individ-
ual domains are enforced using transmission conditions.
The main reasons to consider domain decomposition ap-
proaches are (i) the opportunities for effective precondition-
ing, and (ii) the ability to undertake computation in parallel
to speed up the global solution.

Of particular interest is the Multi-trace formulation (MTF).
Multi-trace formulations provide a clean domain decom-
position approach that is amenable to fast solution tech-
niques based on Calderon preconditioning [2]. In [3], a
MTF approach that can be used for the solution of scat-
tering/transmission problems involving both penetrable and
impenetrable domains is introduced and analysed. The au-
thors offer both direct and indirect Combined Field Integral
Equation (CFIE)-type formulations that are not susceptible

to interior resonances, regardless the details of the geomet-
ric subdivision.

In this contribution, a MTF formulation is introduced that
can model scattering/transmission problems involving sys-
tems that contain thin sheets. In [4], an indirect method
based on only electric currents (the so-called ECF) is pre-
sented and can deal with perfectly conducting regions with
non-zero volume. The method presented here is a di-
rect method. The unknowns can be readily interpreted as
field values (or jumps of field values), without additional
post-processing. The method here is a direct extension of
the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT)
method for single domain transmission problems and shares
with that method that it is not susceptible to interior res-
onances. The formulation is introduced, a discretisation
strategy is put forward, and the implementation challenges
are discussed.

2 Formulation

This contribution is concerned with time-harmonic trans-
mission problems at fixed frequency @. Consider a de-
vice that is partitioned in a number of domains Qy, ..., Qg,
where Qg is the only unbounded domain. The normal to
Qg,s =1,...,5 is denoted #i; and is pointed outward of €.
Each domain is occupied by a material characterized by
permittivity and permeability (&, (), or equivalently by
the wave number and impedance (&g, 1);).

In addition, it is assumed that the geometry contains a num-
ber of PEC sheets I',, r = S+1,...,54+ R. Each sheet ra-
diates into a single domain. For the common case where
sheets are deposited as coatings on neighboring penetra-
ble regions, multiple choices for this assignment procedure
are possible. The arbitrarily but consistently chosen normal
fields to I', are denoted 7,

The essence of the method introduced here can be clarified
by considering the special case of a single penetrable region
Qp, and a single sheet I'; that radiates in the unbounded
region Qo = R3\ Q. The sheet is geometrically embedded
in dQyNQy, i.e. it is a coating applied onto the penetrable
region (Fig. 1).



For a field (e, k) in Q to be an eligible solution to the scat-
tering problem, the tangential electric and magnetic field
just outside of dQ should vanish, as should the (average)
tangential electric field at 1"£S>. Taking into account both the
equivalent currents on dQ; and the induced current on the
sheet I'; radiate into Qg leads to the following constraints

on the field traces and jumps:
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with m; = e X A}, j; = Ay X h, j, = [Aiz X h], and where
square brackets denote the jump across the sheet. The off-
diagonal contributions 1/2 should be interpreted as:

3= [ Sty ver,
They only contribute at I', NI';. Unfortunately their assem-
bly cannot be performed by classic finite element method
assembly routines. Correct assembly requires the ability to
look up geometrically coinciding elements from the two in-
teracting surfaces I';, and I';. The sign of these off-diagonal
contributions depends on the choice of normal field on the
sheets.

For the same field to be a solution of a solution in Qq, it
needs to fulfill:
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In the spirit of the PMCHWT equation, the outer equation
and the inner equation are subtracted, yielding:
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Finally, to bring out the symmetry, the first and second row
are interchanged and the sign of the single layer contribu-
tions located on the diagonal are brought in agreement:
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Note that the unknowns are defined on entire domain
boundaries or entire sheets. For instance, the vanishing of

the electric trace on that portion of dQ that is covered by
the metallic coating does not need to be implemented as
an essential condition i.e. the space of candidate solution
does not need to be limited to only those fields that al-
ready exhibit this property. Instead, the PEC condition at
the sheet emerges as a natural condition, i.e. it is one of
the distinguishing properties of the solution of the system.
Another advantage, and the main motivation of the origina-
tors of multi-trace integral equations, is that the system is
amenable to Calderon preconditioning.

3 Numerical Results

We first consider the case of scattering by a single domain
Q partially coated by a thin PEC sheet 1"52) as illustrated in
figure 1. Q; has wave number k; = 2.4k and impedance
M1 = No and is surrounded by an unbounded medium Qg
with material properties ky = 3.0, 179 = 1.0. The structure is
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Figure 1. Rectangular block with PEC sheet (colored:red),
and dielectric (colored:green) approximated by a triangular
mesh comprising 712 facets. The gap between the layers
is added for clarity and to illustrate the ’gap idea’ in the
MTF formulation, and is not included in the simulation of
the actual geometry.

illuminated by a plane wave e’ = fe /02 h' = _Tém (v x
e').

The unknown fields are approximated as linear combina-
tions of Rao-Wilton-Glisson (RWG) functions. The equa-
tions are tested by the set of rofated nx RWG functions.
The number of degrees of freedom on I' is 1068, whereas
the number of DoFs on I is 260.

Figures 2 (left and middle) show a colormap of the near-
field in the system. Fig 2 (middle) reveals that the £,-field
is continuous across the dielectric portion d€; of the struc-
ture while there is a discontinuity across the PEC interface.
This jump corresponds to the induced electric currents on
the surface of the PEC. This is expected and is in accor-
dance with boundary conditions. Fig. 2 (right) shows the z
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Figure 2. Left: Colormap of the z component of the electric near field E, (V/m) plotted along the x and z axes at y = 0.5.
Middle: Colormap of the y-component of the magnetic near field H, (V/m) plotted along the x and z axes at y = 0.5. Right:
Traversing the structure along the x-axis, the z-component of the electric field can be seen to be continuous and tend to zero as
the sheet is approached. The y-component of the magnetic field is continuous, except at the sheet, where it jumps proportionate

to the induced current.

and y components of the total electric and magnetic fields
respectively, as the cuboid is traversed at the center from
left to right on the x-axis. Field continuity is as we expected
and the electric field vanishes at the PEC sheet as required.
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Figure 3. For scattering by an object made of the same
medium as the background domain, the y-component of the
total magnetic field is continuous and equal to the incident
field, except at the sheet. The total E, field is zero (inset).

For verification purposes, the case where the medium oc-
cupied by Q; is chosen to be the same as the enveloping
domain Qg is considered. Here it is expected that Q; is
transparent and the solution is simply equal to the incident
field. As demonstrated in Fig. 3 the total magnetic field just
inside and outside Q; remains the same, continuous, and is
roughly equal to the incident magnetic field. A slight dis-
continuity across the thin PEC sheet can also be observed.
Furthermore, the tangential electric field is also continuous
and tends to zero at both sides of the PEC (see Fig. 3 inset).

To demonstrate the flexibility and robustness of the ap-
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Figure 4. Composite structure featuring two dielectric lay-
ers (colored:green) and a thin PEC sheet (colored:red).

proach introduced here, consider the geometry from Fig. 4.
A thin sheet is sandwiched in between two dielectric lay-
ers. In this setup, not two but three geometrically coin-
ciding surfaces interact through the external domain. To
correctly implement this scenario, special care needs to be
taken in deducing the signs of the off-diagonal 1/2 contri-
butions. Indeed, upon arbitrarily assigning an orientation
and accompanying field of normals 73 to the thin sheet, this
normal field will point towards one of the penetrable do-
mains, and away from the other. Because the system con-
tains an additional penetrable region, a new pair of traces
(m3, j;) appears in the MTF formulation.

The second dielectric layer €23 has material properties k =
1.4xyp and 1 = Mo, and the combined structure is illumi-
nated with the plane wave. Figures 5(a) and (b) shows the
induced surface electric currents on all domains. Fig 5(b)
highlights the significant current densities on the surface
of the PEC sheet with higher current magnitudes along the
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Figure 5. Surface electric currents (in A/m) induced on the
surface of the dielectric and PEC layers.

boundaries. This is due to a singular behaviour of the cur-
rent at the edges typically expected in the simulation of thin
conductive sheets.

Figure 6. Colormap of the y-component of the magnetic
near field H, (V/m) plotted along the x and z axes aty = 0.5

Fig. 6 and Fig. 7 allow to inspect that the continuity of these
field componentes agree with the jump conditions. The ef-
fect of introducing a perfectly conducting sheet is clearly
demonstrated in Fig. 8, in which the e, and h, components
are plotted as one traverses the system along the x-axis at
(y=0.5,2z=0.5).
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Figure 7. Colormap of the z component of the electric near
field E, (V/m) plotted along the x and z axes at y = 0.5
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Figure 8. Along the x-axis, the z-component of the elec-
tric field can be seen to be continuous and tend to zero as
the sheet is approached. The y-component of the magnetic
field is continuous, except at the sheet, where it jumps pro-
portionate to the induced current.
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