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Abstract 
 
At present, the raindrop size distribution (DSD) fitting 
method and traditional neural network method are the main 
quantitative precipitation estimation (QPE) algorithms. 
The former is not enough to express the spatiotemporal 
variability of the DSDs using generalized Z-R parameter 
relationship, and the latter is limited by the number of 
network layers, network structure and computing power. 
Their performance cannot both meet actual needs. In this 
research, we propose an alternative approach to dual-
polarization radar (DPR) QPE. In particular, a radar-gauges 
dataset (RGD) is constructed for QPE based deep learning 
using radar raw data and gauges measurements for landfall 
typhoon in South China and a deep learning model is 
designed and trained using this dataset. The model is 
applied to radar data to produce rainfall estimates. 
Preliminary results show the promising performance of this 
novel method compared to traditional QPE estimators.  
 
1. Introduction 
 
The heavy rainfall of landfall typhoons is one of the main 
natural disasters that cause life and economic losses in 
South China [1, 2]. The QPE algorithms for typhoon 
precipitation are different from the other precipitation, 
because of the differences in the DSD [3, 4]. In principle, 
the functional relation between rain rate on the ground and 
radar observations aloft can be obtained from 
measurements [5]. However, it is difficult to present this 
functional relation in a simple form duo to the complex 
spatiotemporal variability in precipitation microphysics [6, 
7]. QPE algorithms have been studied in last two decades 
using dual-polarization radar measurements. The two 
mainstream methods of QPE are the DSD fitting [8-15] and 
traditional neural network [16-20]. The former is not 
enough to express the spatiotemporal variability of the 
DSDs using generalized Z-R parameter relationship [21, 
22], and the latter is limited by the number of network 
layers, network structure and computing power [23, 24].  
 

Prior research has shown that deep leaning can be used to 
estimate surface rainfall from radar measurements [17, 18, 
25, 26]. This deep neural networks approach can fit the 
complex functional relation from high dimension input 
space (i.e., radar data) to the target space (i.e., rain gauge 
measurements) [5]. However, the utilization of deep 
learning in QPE is subject to many factors such as the 
representativeness and sufficiency of the training dataset 
and the ability of computing power and the generalization 
capability of the trained model to new data [19, 27].  
 
In addition, most of the previous studies focused on single 
polarization radar and the Constant Altitude Plan Position 
Indicator of DRP (i.e., reflectivity) [5] and simulated DRP 
data (i.e., DSD) [28, 29]. Similar application of DPR raw 
data is yet to be explored for landfall typhoon in South 
China. Based deep neural networks, this study aims to 
quest DPR QPE using radar raw data and rain gauge 
measurements, and evaluate the QPR QPE performance in 
landfall typhoon precipitation even.  
 
2. Data Set  
 
The research objects are 11 typhoon rainfall events in 
South China, during 2017-2019. 
 



Figure 1. Locations of Guangzhou radar (red fork) and 
gauges (black dots), and typhoon paths. 

Figure 1 shows the locations of radar and gauges used in 
building RGD, and 11 typhoon paths related.  

Table 1 illustrates the sample information of constructed 
RGD, using Guangzhou radar raw data and gauges 
measurements of 11 typhoon rainfall events. 
 

Table 1. The sample information of RDG. 
 

# Tc Name 
(No.) 

Num. of samples 
in Dataset 

1 Merbok (1702) 4502 
2 Hato (1713) 19188 
3 Pakhar (1714) 30401 
4 Mawar (1716) 8992 
5 Khanun (1720) 11880 
6 Ewiniar (1804) 115737 
7 Bebinca (1816) 63874 
8 Mangkhut (1822) 47220 
9 Barijat (1823) 1412 
10 Wipha (1907) 32099 
11 Bailu (1911) 39935 

Total 375240 
 
3. Methodology  
 

 
Figure 2. Flow chart for the training of the QPENet model 
(Lower) based on deep learning and its use to estimate 
precipitation rate (Upper). 

Figure 2 illustrates the process of training the deep 
learning-based QPE network (QPENet) and its application 
system. The key component is a machine learning model 
trained using DPR raw moments and corresponding rain 
measurement from rain gauges. The QPENet model 
equation can be expressed in a general from as [5]: 

ଵ࢟ = ܆ଵܟ)݂ + ଵ)                     1a܊  

௡࢟  = ௡ିଵ࢟௡ܟ)݂ + ௡)                   1b܊ ܈  = ௡࢟௡ାଵܟ)݂ + ௡ାଵ)                  1c܊  

where ܠ is the input 13 × 13 × 3 matrix consisting of DPR ܼ୦, ܼୢ୰, ୮ୢܭ  observables; ࢟ଵ ௡࢟⋯  are the outputs of 
hidden layers from left to right, ܟଵ is the weight vector for 
the input matrix, and ܟଶ  ௡ାଵ are the weights of the nܟ⋯
hidden layer outputs, respectively; ܊ଵ  ௡ାଵ are the bias܊⋯
terms associated with the input, hidden and output layers; ܈ is the output (i.e., DPR precipitation estimates) that will 
be compared with the target labels (i.e., gauge measured 
rainfall). 

In this paper, the Guangzhou radar moments and 
corresponding gauge measurements are used for training 
the QPENet model.  From the eleven typhoon events, 
randomly select one event as the test set, and other events 
as the training set.  
 
4. Preliminary Results  
 
Table 2. Evaluated scores for 2 kinds QPE algorithms of 
all hourly rainfall of the Merbok (1702) event. 
 

QPE 
algorithm CC RMSE NB 

(%) 
NE 
(%) Bias 

QPENet 0.94 1.41 7.55 36.07 1.08 
QPEDSD [30] 0.93 3.14 -15.51 43.63 0.84 

 
In order to demonstrate the performance of the designed 
QPENet model, we compare the deep learning-based 
model with the traditional DSD fitting method [30, 31]. In 
[30], Zhang and Liu have proposed a QPE algorithm for 
landfall typhoon in South China and showed the promising 
performance using local DSD data. Table 2 shows the 
QPENet based on deep learning has better performance 
than the traditional DSD fitting method. 
 

 
Figure 3. (a) and (b) are scattergrams of rainfall rates 
estimated using the traditional DSD fitting model in [30] 
and using  the QPENet model based on deep learning from 
Guangzhou radar versus hourly rainfall measurements 
from rain gauges during Merbok event, respectively. 



Figure 3 illustrates scatter plots of rainfall estimates from 
both traditional DSD fitting method and deep learning 
based approach. In particular, Figure 3(a) shows the rain 
rate estimates from the traditional DSD fitting model in [30] 
versus hourly rainfall measurements from during Merbok 
event. Figure 3(b) shows the rain rate estimates from the 
trained QPENet model versus hourly rainfall 
measurements from during Merbok event. Compared to 
traditional DSD fitting method, the deep learning model 
can greatly reduce the parameterization errors associated 
with the empirical non-linear regress [29], demonstrating 
promising performance of the proposed algorithm.  
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