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Abstract 
 
The GPU-accelerated implementations of two three-
dimensional full-wave electromagnetic solvers for 
scattering radiofrequency problems, based on the finite 
element and the finite difference methods, are compared 
in terms of accuracy and performances, looking also at the 
achieved speed-up with respect to the serial CPU 
implementations. The finite element method shows a 
speed-up of about 10 for medium-size problems, whereas 
the acceleration rises up to 50 when the finite difference 
method is used. The described codes are then used to 
compute the specific absorption rate of a magnetic 
resonance imaging radiofrequency birdcage coil in a 
voxel-based anatomical human model. 
 
1 Introduction 
 
Fast and reliable computing of the distribution of 
radiofrequency (RF) electromagnetic (EM) fields 
produced within a human body by an external source is a 
fundamental requirement for many applications. A direct 
example is the dosimetric assessment of the RF radiation 
generated by magnetic resonance imaging (MRI) [1]. The 
need of shortening computational times becomes even 
larger when dealing with inverse problems, which 
repeatedly solve a direct EM problem until convergence is 
reached. The design of dielectric pads for shimming in 
high-field MRI [2] and the quantitative imaging of the 
electric properties from MRI measurements [3, 4] are just 
a couple of examples of inverse problems at RF. 
 
Different consolidated EM models proposed in literature 
lead to reliable algorithms that can be accelerated to 
achieve the desired speed-up using parallel programming 
on graphics processing units (GPUs) [1]. Common 
frameworks for general-purpose programming of GPUs 
are NVIDIA’s CUDA Toolkit [5] and OpenCL [6]. 
 
In this paper, the RF scattering problem is studied and a 
couple of methods based on the biconjugate gradient 
stabilized (BiCGstab) fast Fourier transform (FFT) [7] are 
compared. The incident EM field generated by the RF 
source in vacuum is assumed known and is the forcing 
term, whereas its alteration due to the presence of a 
human body (i.e., the scatterer) is computed. Both serial 
and parallel C++ implementations, with CUDA toolkit 9.1 
[5] to run on NVIDIA’s GPUs, are presented and 
compared in terms of performances when applied to an 

analytically solved model problem. Finally, the methods 
are tested in a more elaborated set-up featuring the voxel-
based anatomical human model Duke [8] exposed to the 
EM field generated by a RF head coil for MRI. 
 
2 Mathematical Formulation 
 
Let us denote by {E, H} the EM field generated by the 
studied RF source in the presence of the scatterer and by 
{Ei, Hi} the incident EM field generated by the same 
source in vacuum. Denoting by D = ε̃ E the electric flux 
density, in an unbounded domain with Sommerfeld 
radiation conditions at infinity, it solves [7] 
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where ε̃ = ε – iσ/ω is the complex permittivity, with ε the 
electric permittivity, σ the electric conductivity, and ω the 
angular frequency of the radiation; k0

2 = ω2 ε0 0 is the 
propagation coefficient of the radiation, with 0 the 
magnetic permeability of vacuum; A is the scaled 
magnetic vector potential 
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with (r) = exp(–i k0 |r|)/(4  |r|) the Green’s function. 
 
2.1 Weak Form and Finite Element Method 
 
In order to use the finite element method (FEM), equation 
(1) is written in weak form by testing it against function v, 
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where the boundary integral arises from application of the 
divergence theorem to the grad-div term. In the latter 
equation, the integrals are performed on a bounded 
domain  containing the volume occupied by the scatterer 
and a portion of air around it. The symbol n denotes the 
outward normal unit vector to the domain boundary . 
Despite the latter equation does not contain explicitly any 
boundary condition, the relation (2) between A and D 
implicitly defines the Sommerfeld radiation condition 
ensuring for the existence and the unicity of the solution. 
 
The electric flux density D and the related scaled 
magnetic vector potential A, both of which belong to 
H(div, ) and such that (3) holds for any test function v in 
H(div, ), are looked for. In order to keep the div-
conformity features of the functions in the discretization, 
finite Nédélec’s facet elements [9] are used to discretize 



(3) on a uniform Cartesian mesh, whose elements are 
called voxels. The vector shape function associated to a 
generic face of the mesh is depicted in Fig. 1 and is such 
that its flux through the associated face is unitary. The 
FEM discretization leads to the linear system 
 FEM FEM FEM , M Kd a b   (4) 

where MFEM and KFEM are the sparse FEM matrices, bFEM 
is the forcing term, d and a are the vectors approximating 
D and A, respectively, related to the value of the fields in 
the centers of mass of the faces in the mesh. 
 
2.2 Finite Difference Method 
 
The finite difference method (FDM) can be used to 
directly discretize (1) in a uniform Cartesian mesh. In 
particular, the grad-div term is discretized using the 
centered second order finite differences between the 
values at the centers of mass of the voxels in the mesh, as 
shown in Fig. 2. The resulting linear system can be 
written as follows, 
 FDM FDM FDM. M Kd a b   (5) 

In this case, d approximates the values of D in the mesh 
voxels’ barycenters. Since (2) holds everywhere, a 
conveniently approximates A in the voxels’ barycenters of 
an extended mesh, bigger than the actual domain of two 
voxels in each direction (cf. Fig. 2). Thus, whilst MFDM is 
simply a diagonal matrix, KFDM is a rectangular one [4]. 
 
2.3 Scaled Magnetic Vector Potential 
 
In order to make equations (4) and (5) solvable, the 
dependence of the potential A to the flux density D must 
be approximated. For both FEM and FDM, d estimates 
each component of D in a three-dimensional Cartesian 
grid—parallel faces’ barycenters or voxels’ barycenters. 
This feature allows exploiting the FFT for an efficient 
evaluation of the convolution product in (2), which can be 
formally expressed as a matrix-vector product [10] 
 X , Ga d   (6) 

whose dense matrix GX is never actually evaluated. 
Finally, the linear system to be solved can be written as 
  X X X , M K G d b   (7) 

where X can be either FEM or FDM. 
 
3 Code Implementation 
 
The linear system (7) is solved with the matrix-free 
iterative solver BiCGstab [7] implemented in serial and 

parallel C++ codes with CUDA toolkit 9.1 [5]. In 
particular, the matrix-vector product with GX is evaluated 
using the libraries FFTW3 [11] and cuFFT [5] for FFT 
computation. In order to reduce the time consumed by 
matrix GX application, the convolution kernel FFT is 
computed once and stored throughout the procedure. 
 
The sparse FEM matrices MFEM and KFEM are assembled 
by CPU with the library EIGEN3 [12]. Then, in the 
parallel code, they are transferred to GPU, stored 
throughout the procedure and managed with the library 
cuSPARSE [5]. On the other hand, the sparse FDM 
matrices MFDM and KFDM are not explicitly computed, but 
are, instead, applied as filters. In particular, the diagonal 
contributions are implemented as the Hadamard product 
of vectors, whereas the grad-div term is computed by 
applying the filter whose stencil is shown in Fig. 2. In the 
parallel code version, this is done by means of CUDA 
kernels implemented ad hoc. 
 
The BiCGstab method provided by EIGEN3 is used for 
the serial code, whereas the library cuBLAS [5] is 
employed for implementing it to work on GPU. Neither 
the serial nor the parallel solvers make use of matrix 
preconditioning. The typical bottleneck in GPU 
programming—communications between host and 
device—are completely avoided during the execution. 
 
4 Validation and Performance Evaluation 
 
The codes are tested against an analytically solved model 
problem: the scattering of a layered sphere illuminated by 
a plane wave at 128 MHz. Three layers are considered (cf. 
Fig. 3), whose geometric and electric properties are 
collected in Table 1. From the inner to the outer layer, the 
properties mimic those of cerebrospinal fluid (CSF), 
white matter and skull, respectively [13]. 

 
 

Figure 1. Representation of the vector shape function 
associated to an internal face of the Cartesian mesh. 
 

 

Figure 3. Schematic representation of the reference 
model problem. 
 

 
 

Figure 2. Representation of the FDM mesh with voxel 
barycenters denoted by dots and the computational 
domain  colored in grey. The stencil in the plane of the 
grad-div operator is pictured for the circled node by the 
dashed lines. A is evaluated also in white voxels. 
 



The analytical solution, evaluated according to [14], is 
reported in Fig. 4 (in the same plane of Fig. 3) and is 
compared to the approximations provided by FEM and 
FDM with different mesh sizes (the two applied on the 
same hexahedral meshes). The FEM approximation is 
more accurate than the FDM one, in particular at the 
boundary between contiguous materials. This observation 
is reflected in the global error measured in L2 norm, 
whose trend is reported in Fig. 4. On the other hand, FDM 
appears to be much faster than FEM and to achieve better 
speed-up with respect to the computational time of CPU 
code, when executed on GPU. The performances of serial 
and parallel implementations, reported in Fig. 5, have 
been evaluated by running the codes on a core of an Intel 
Xeon E5-2699 v4 and on an NVIDIA Quadro K6000. 
 
For FEM solver, the performances of the parallel code 
become favorable by increasing the problem size, up to a 
computational time about 10 times smaller than the serial 
one for the largest considered problem. Being matrix-free, 
FDM is more naturally parallelized than FEM and its 
parallel version is advantageous already for a small size 
problem. Its efficiency increases until a speed-up higher 
than 50 is reached for the largest problem. The last 
histogram of Fig. 5 compares the computational times of 
the parallel GPU implementations. The higher speed-up 
achieved by FDM translates in a faster execution of the 
solver when FDM is used instead of FEM. 
 
It is worth noting that the speed-up results reported in 
Fig. 5 are independent of the simulated frequency, since 

they are due only to the matrix-vector products performed 
at each step of the iterative BiCGstab solver. 
 
5 Biomedical Application 
 
The EM field generated by a 16-leg birdcage head coil of 
a 3 T MRI scanner operating at the frequency of 128 MHz 
has been computed in order to check the codes in a more 
realistic case. The head coil radius is 14 cm and its height 
is 30 cm. The RF coil irradiates the head of the 
anatomical human model Duke [8], discretized with a 
2 mm mesh of 124×99×121 voxels in x, y, and z direction, 
respectively. The reciprocal positioning of the human 
model and the birdcage coil is depicted in Fig. 6 and it is 
realistic for an MRI session of brain imaging. The electric 
properties are assigned to the biological tissues according 
to the IT’IS Foundation database [13]. 
 
A quadrature supply of the RF coil is simulated by 
imposing a unitary-peak current in each mesh of the coil, 
each one dephased of the geometrical angle. The incident 
field is then computed semi-analytically by integration. 
 
Since the dosimetric quantity for safety assessment at RF 
is the specific absorption rate (SAR) of the EM radiation, 
the computed electric field is further elaborated to obtain 
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Table 1. Properties of the Model Problem 

Region Radius / cm 
Relative 

permittivity 
Electric conductivity 

/ (S/m) 

1 2.0 84.0 2.14 
2 8.0 52.5 3.42×10-1 
3 10.0 14.7 6.74×10-2 

 

 

 
 

Figure 4. Top, trend of the L2 error against different mesh 
sizes. Bottom, map of the actual solution (in the same 
plane of Fig. 3) to be compared with FEM and FDM 
approximations with different mesh sizes. 
 

 

 

Figure 5. Top, speed-up of FEM implementation with 
respect to the computational time of the FEM CPU code. 
Middle, speed-up of the FDM implementation with 
respect to the computational time of the FDM CPU code. 
Bottom, computational times of the GPU codes. 
 



where ρ is the tissue density. In Fig. 6, the results 
obtained in the highlighted coronal section by FEM and 
FDM implementations are reported. Despite the global 
distribution of SAR is almost the same for the two 
methods, a slightly higher maximum value and more 
distributed hotspots are estimated by FEM, which has 
proved to be more accurate than FDM in the model 
problem. The execution of the parallel GPU code for 
FEM requires about 1 minute with a speed-up of about 10 
with respect to the corresponding serial code. On the other 
hand, FDM provides the solution in less than 15 
seconds—about 50 times faster than the corresponding 
CPU code. 
 
6 Conclusion 
 
Although FEM leads to more accurate approximations of 
the scattered EM fields, FDM can be efficiently 
parallelized to work on GPUs and achieves a speed-up of 
about 50 on a medium-size problem. Given the small 
computational times, in the solution of a single direct 
problem, the higher accuracy of FEM makes it the 
preferable choice; but when the direct solution must be 
repeated multiple times to solve an inverse problem, the 
velocity of FDM becomes relevant. The fast solution 
achieved by FDM could then be used as starting guess for 
a final refinement using FEM. 
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Figure 6. Left, schematic representation of the 
biomedical problem. Around the head model, the 
birdcage conductors are drawn in blue. Right, SAR 
distributions on the coronal plane pictured in the model 
scheme. The reported SAR is computed by the 
implemented FEM and FDM codes. 
 


