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Abstract
The upcoming Square Kilometre Array (SKA-Low) will

map the distribution of neutral hydrogen during reioniza-

tion and produce a tremendous amount of 3D tomographic

data. The biggest challenge for the observational analysis

of these images is to separate the 21-cm signal from the un-

desired foreground and instrumental noise contaminations.

Here we present SERENEt. A deep learning approach that

works on SKA mock observation with an observation time

of 1000 h and in the presence of the Galactic synchrotron

foreground. We use a PCA and functional PCA (fPCA) pre-

process with BlueBild code to reduce the dynamic range

in foreground contaminated 21-cm image and show that our

network identifies regions of neutral hydrogen (H I) and re-

covers the reionisation 21-cm signal from those same re-

gions identified as neutral. We show as our approach can

identify neutral regions during reionization with more than

87 per cent accuracy and recover the 21-cm 2D power spec-

tra with an average of 95 per cent accuracy.

1 Introduction
The Epoch of reionization (EoR) is a period of great impor-

tance in studying structure formation and evolution in the

Universe. During this period, the predominately cold and

neutral intergalactic medium (IGM) transitioned to a hot

and ionized state due to the appearance of the first lumi-

nous cosmic sources. These sources, which may have been

star-forming galaxies and quasi-stellar objects (QSOs), pro-

duced the ionizing photons, which over a period of approx-

imately 500 million years completed the reionization of the

Universe [1, 2, 3]. When observed, the 21-cm signal would

have redshifted to the electromagnetic spectrum radio band.

The low-frequency component of the SKA will be sensitive

enough to detect the 21-cm signal produced during EoR

and create images of its distribution on the sky [4, 5, 6].

However, the biggest challenge for SKA observational data

analysis of these astronomical images is to separate the 21-

cm signal from the undesired foreground and instrumen-

tal noise contamination, as these outshine the cosmological

signal by several orders of magnitude.

2 Our Network, SERENEt
In this work, we present SERENEt (SEgmentation and

REcovery NEtwork), a novel approach for the identifica-

tion of the distribution of H I regions and the recovery of the

21-cm signal from SKA-Low multi-frequency tomographic

images for the Cosmic Epoch of Reionization (EoR). Our

code consists of a pre-processing step for foreground mit-

igation and two U-shaped deep convolutional neural net-

work (CNN) [7] for segmentation and 21-cm signal recov-

ery, SegU-Net and RecU-Net respectively. In Figure 1, we

show an overview of the SERENEt pipeline.

The SKA-Low mock observation image, Iobs, contains fore-

ground contamination and systematic noise that outshine

the cosmological signal by several orders of magnitude.

Therefore, we pre-process Iobs with standard PCA fore-

ground removal technique [8] to partially subtracts the

foreground contamination. The resulting image, Ires, will

still contain some foreground residual and most systematic

noise. However, this step is essential to reduce the dynamic

range in the contaminated image to a reasonable level for

neural network training. Therefore, we plan to use a func-

tional principle component analysis (fPCA) decomposition

with the BlueBild1 code as the main pre-process method.

BlueBild calculates the sky intensity from calibrated visi-

bilities and separates the image into a series of energy lev-

els. The energy decomposition is performed directly on

the visibilities, allowing for more efficient separation of the

foreground and the 21-cm signal before convolving the im-

age. We can filter the high-energy components associated

with the foreground contamination and employ the remain-

ing component to build back the residual image. In Fig-

ure 2, left panel, we show an example of the residual image

after PCA pre-processing. In the second step, we combine

the input/output of two independently trained deep neural

networks. We refer to this step as the SERENEt pipeline.

The former network is SegU-Net, a stable and reliable seg-

mentation CNN for identifying neutral hydrogen regions in

SKA mock images [9]. We employ this network to iden-

1https://github.com/epfl-radio-astro/bipp

This paper’s copyright is held by the author(s). It is published in these proceedings and included in any archive such as IEEE
Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly
Work.”



Figure 1. An overview of the SERENEt pipeline. The data include the mock observation with foreground and instrumental

noise contamination, Iobs. The residual image after the pre-processing step, Ires. The binary prior for H I region identification,

IB and the recovered 21-cm image, I21cm. Data input and output are shown with an example image. Each code step is shown in

double-bordered boxes. Single-bordered boxes indicate operation on data.

tify regions of 21-cm emission from the pre-process tomo-

graphic dataset, Ires. The resulting binary image, IB, will be

used as a prior map for the second and final component of

SERENEt that aims to recover the 21-cm signal, the RecU-

Net network.

One of the main drawbacks of machine learning is that it

often does not provide for uncertainties and confidence in-

tervals for its predictions. Therefore, we have developed a

procedure [9] that provides an error estimation with a pixel-

by-pixel error in SegU-Net outputs image. An example of

the resulting uncertainty map can be seen in Figure 2, right

panel.

3 Simulation of the 21-cm & Foreground
Radio interferometry-based telescopes record the differen-

tial brightness temperature δTb while observing the red-

shifted 21-cm signal. δTb depends on position on the sky rrr
and redshift z and can be given as [4],

δTb(rrr,z) ∝
√

1+ z(rrr,z)
)

xHI(xxx,z)
(
1+δb(rrr,z)

)
(1)

where xHI and δb are neutral fractions and the baryon

density contrast, respectively. Here we assumed the spin

saturated approximation relevant for redshift z < 12 [10].

With this approximation, the differential brightness signal

is always in emission (δTb ≥ 0 mK) and locations with

δTb = 0 mK correspond to ionised regions.

Between 250 and 30MHz, the dominant emission comes

from the Galactic synchrotron radiation. This emission

alone is expected to contribute to most of the total fore-

ground contamination of the comic 21-cm signal [11, 12].

Other contributors can include emissions from unresolved

extra-galactic point sources, Galactic free–free emissions,

supernova remnants and extra-galactic radio clusters, which

for simplicity, have been neglected in this study. We based

our Galactic synchrotron emission model in [13]. We ex-

press the foreground radiation with a Gaussian random field

with an angular power spectrum as:

Csyn
l (ν) = A150

(
1000

l

)β̄ ( ν
ν�

)−2ᾱsyn−2Δᾱsyn log( ν
ν� )

(2)

here the parameter for the Galactic synchrotron emission

is the power spectra amplitude A150 = 512mK2 at the ref-

erence frequency ν� = 150MHz, the angular scaling β̄ =
2.34, the spectra index ᾱsyn = 2.8 and the spectral running

index Δᾱsyn = 0.1. These quantities are taken from [14],

and [15]. We then generate the foreground temperature

fluctuations map following the relation

δT syn
b (U, ν) =

√
ΩSKA C syn

l (ν)
2

[xl(U)+ i · yl(U)] (3)

where ΩSKA is the total SKA-Low solid angle and U =
l/2π . The two quantities xl and yl are two independent

random Gaussian variables with mean zero and variance of

one, N ∼ (0,1). By performing two-dimensional inverse

fast-Fourier transform of Equation 3, we get the spatial dis-

tribution of the foreground contamination δT syn
b (rrr, z). With

each lightcone simulation, we fix the random variables seed

for the lowest redshift, z = 7, and compute Equation 2 for

the corresponding frequency of the image.

4 Mock Observation for SKA-Low
To train SERENEt, we require a large set of simulations that

represent the 21-cm radio signal for a wide range of redshift

during reionization and different assumptions about the as-

trophysical sources of ionizing radiation. To do so, we em-

ploy py21cmFAST semi-numerical cosmological simulation

code [16] with the approximation in Equation 3.

The simulated 21-cm signal is smoothed into a 3D light-

cone of shape (Nx , Ny, Nν ) = (128, 128, 552). Nra and Ndec
correspond to the sky coordinated in comoving Mpc with a

resolution of Δx = 2cMpc. This intrinsic resolution corre-

sponds to an angular aperture of Δθ = 0.777 arcmin along
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Figure 2. Slice comparison of the binary field, in blue ionized regions and in red neutral. Left panel: residual image after the

pre-process step, Ires. Middle panel: binary field recovered by SegU-Net, IB. Green lines indicate the true separation between

ionized/neutral regions, derived from a smoothed version of the simulated neutral hydrogen distribution. Right panel: the per-

pixel error as calculated by SegU-Net. The color bar indicates the intensity of the network uncertainty.

Figure 3. 2D power spectrum comparison for a tomographic data centred at 142 MHz (z = 9) and frequency width of 20,MHz.

Left panel: the ground truth power spectrum from EoR 21-cm signal. Middle panel: 2D power spectrum from recovered 21-cm

field with RecU-Net. Right panel: residual power spectrum after foreground contamination removal with GPR.

the line of sight at z = 7. Nν is the number of frequency

channels from 118 to 178 MHz, corresponding to redshift

11 to 7.

We simulate the instrumental noise produced from 1000

hours of observation following the methods in [17]. We

then mimic the telescope limited resolution in the field-

of-view direction by smoothing with a Gaussian kernel

with full-width at half maximum (FWHM) of λ0(1+ z)/B,

where B is the maximum baseline. For example, B = 2km

corresponds to a resolution of 2.905 arcmins at redshift

z≈ 7 and 3.631 arcmins at redshift z≈ 9 respectively. In the

frequency direction, we reduce the resolution by convolv-

ing with a top-hat bandwidth filter of a width matching the

FWHM of the angular smoothing in comoving units. This

width corresponds to 0.462 MHz at redshift z≈ 7 and 0.551

MHz at redshift z ≈ 9, respectively.

5 Resutls
In Figure 2, we show a visual comparison of slices of the

binary field predicted by SegU-Net (central panel) with the

ground truth (green contours). Here, the ground truth is

the boundary of ionized regions extracted from the simula-

tion neutral fraction field at the same resolution by putting

a threshold of 0.5. The red and blue pixels represent neutral

and ionized pixels, respectively. We show the pixel error es-

timated from SegU-Net with a colour bar in the right panel.

In the left panel, we show the residual image after the pre-

processing step for foreground mitigation.

SegU-Net shows an accuracy of rφ � 85% in recovering

shapes of the H I regions. As expected, most of the net-

work uncertainty is located at the boundaries of neutral re-

gions or between two large ionized bubbles when these are

percolating, and the gap is getting narrower. This uncer-

tainty affects small neutral islands of a few cMpc scale re-

siding in vast ionized regions. Moreover, larger uncertain-

ties, σstd ≥ 0.25, are located around narrow ionized regions

protruding into large neutral regions (e.g. right-most panel,

at coordinates x ∼ 75 and y ∼ 25). This behaviour suggests

that the uncertainty mainly depends on the contrast between

the local neutral and ionized regions. The network selects

regions in the image based on the largest gradient in the

21-cm signal intensities to recover the binary field. There-

fore, we expect larger uncertainties for reionization scenar-

ios where the contrast in the 21-cm intensities is relatively

small.

As illustrated in Figure 1, the output of SegU-Net, IB, and

the residual image are combined together and constitute the

input of RecU-Net, IB ◦ Ires. The resulting output is the

recovered 21-cm signal at a given frequency, I21cm. Sliding

trough the Nν frequency channels, we can recover the entire

tomographic data from frequency 118 to 178 MHz. In Fig-
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ure 3 central panel, we show the 2D power spectrum of the

recovered 21-cm signal for a sub-region of the tomographic

dataset, centred at 142 MHz (z = 9) and a frequency depth

of ±10 MHz. A correlation of R2 � 98% between the power

spectra of the 21-cm field recovered by RecU-Net and the

ground truth (on the same figure, left panel) shows that

our approach can achieve an improvement of 15% accu-

racy when compared to state-of-the-art foreground removal

technique such as the Gaussian Regression Process (GPR)

[18] (Figure 3, right panel).
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