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Abstract 
 

We propose an inversion method in the feature space to 

reconstruct human heads' three-dimensional (3-D) 

permittivity and conductivity distribution for brain stroke 

microwave imaging. The permittivity and conductivity 

distribution of human heads are compressed into latent 

codes of a variational autoencoder (VAE). The optimal 

codes are solved during the inversion process by 

minimizing a regularized cost function using iterative 

optimization. The final head model will be decoded from 

the decoder of the VAE. This method seamlessly 

incorporates the prior knowledge of brain structures into 

the imaging process and significantly reduces the number 

of unknowns. Numerical experiments show that it can 

achieve higher resolution with a faster solution speed than 

the conventional voxel-based method. 

 

1 Introduction 
 

Microwave imaging is an effective tool for early diagnosis 

and bedside monitoring of brain strokes[1]. It is portable, 

non-invasive, and harmless to human bodies. The basic 

principle is that the permittivity and conductivity of brain 

tissues are different. Electromagnetic fields measured 

outside the head can be inverted to the spatial distribution 

of the electrical properties, according to which 

hemorrhagic or ischemic injuries can be located.  

 

Quantitatively recovering the permittivity and conductivity 

relies on solving a nonlinear inverse scattering problem. 

The optimal electrical parameters are found by minimizing 

the misfit between the simulated data and the 

measurements. This inverse problem is challenging due to 

high nonlinearity, ill-posedness, and computational 

complexity. Most algorithms divide the imaging domain 

into pixels or voxels[1][2], and the number of unknowns is 

usually larger than the data volume. Prior knowledge 

described by regularizations is required to stabilize the 

solution process. However, most regularization schemes 

are handcrafted and only constrain the unknowns at the 

pixel or voxel level. The common structural information of 

human brains is absent in the inversion process; therefore, 

the imaging resolution is generally limited.   

 

Data-driven deep learning approaches can overcome the 

limitations of handcrafted regularizations and accelerate 

the online imaging process[3][4]. However, there are still 

bottlenecks in 3-D brain imaging. First, the cost of offline 

training is immense. Full-wave simulations of 3-D heads to 

construct the training set are time- and memory-consuming, 

and training a deep neural network whose output may have 

millions of unknowns is resource-consuming. Second, 

data-driven methods suffer from risks of misdiagnosis. A 

surrogate model deduced from specific datasets may not be 

able to predict diverse human brains. 

 

In this work, the 3-D head’s permittivity and conductivity 

are compressed into latent codes in the feature space of a 

VAE. The optimal codes are solved in the physics-based 

deterministic framework, where the data misfit between the 

simulated data and the measurements is minimized. 

Numerical examples show that this method improves 

imaging resolution and computational speed compared 

with the conventional voxel-based method.  

 

2 Strategy of encoding and decoding 
 

A VAE is constructed to transform the 3-D brain between 

voxels and codes. It contains an encoder and a decoder[5]. 

The encoder converts the brain to a distribution of latent 

codes corresponding to the posterior probability of training 

data.  The decoder recovers the sampled code vector from 

the distribution to a brain.  The VAE has a continuous and 

complete latent space for stably optimizing the codes in 

data inversion. 

 

 
 

Figure 1. An illustration of 3-D head compression by the 

2-D VAE. The VAE is trained to compress two-channel 

real-valued images into code vectors. 3-D heads can be 

represented by a code matrix with each column 

representing a transverse slice. 



 

As shown in Figure 1, the 2-D VAE is applied to compress 

3-D heads. Its input is a Mx×My×2 image that represents 

the transverse plane of a head, which is composed of two 

channels related to the permittivity and conductivity. The 

encoder converts the input to the mean and logarithmic 

variance of the code vector, whose size is Mc×1. The 

decoder will sample from the distribution and recover the 

input from the sample codes. To compress a 3-D model 

consisting of Mx×My×Mz voxels, the above procedure 

will be performed Mz times for all transverse planes. The 

final codes will be an Mc×Mz matrix with each column 

representing a transverse slice. Finally, the complex 

permittivity of a 3-D head can be represented by latent 

codes in the VAE’s feature space: 

 ( ) ,m cD=   (1) 

where m is the discrete complex permittivity represented 

by voxels, c is the code vector for all transverse slices, and 

D is the decoder.  

 

3 Inversion algorithm 
 

Let us denote the forward problem as  

 ( ) ( ),d m cF G= =   (2) 

where F is the electromagnetic simulation function, d is the 

simulated microwave data, and G builds the connection 

between the data and codes.  

 

The cost function for inversion is defined as  
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where dobs is the observed data, 
z

∇ is the differential 

operator along the z-direction, αd and αz are factors that 

balance the weight of the two terms. The regularization 

ensures that the decoded permittivity and conductivity are 

continuous in the vertical direction. 

 

Equation (3) is minimized by the Gauss-Newton method. 

In the kth iteration, the update of codes, c
k

∆ , is solved 

from  

 A c b
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with 
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where Jd and Jg are the Jacobian matrix of the decoder D 

and the forward problem G, I is the identity matrix, and β 

is the Tiknov regularization factor. 

 

The elements of Jd are partial derivatives of m to the latent 

vector c. They are computed by the finite-difference 

method, i.e., 
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where ci is the i-th element of the vector, and δi is a small 

value that perturbs ci. 

 

The elements of Jg are sensitivities of measurements to the 

latent codes, which are computed according to the chain 

rule: 
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where the last term is the sensitivity of the microwave data 

at the location r0 with respect to the l-th element of m, 

which can be computed by the adjoint equation method. 

 

Computing the forward modeling and Fréchet derivatives 

are accelerated on multiple GPUs. First, all perturbed codes 

of a transverse slice are aligned as a 2-D matrix, which will 

be taken as a batch to input the decoder. The prediction is 

naturally parallelized under the deep learning framework.  

Second, microwave fields generated by different sources 

are computed and stored in parallel, which enables us to 

independently compute equation (8) for different 

transmitting-receiving pairs on multiple GPUs. 

 

4 Numerical experiments 

 

4.1 Dataset Preparation 

 
The 3-D head models are constructed based on an open-

source MRI dataset [6]. Most MRI models have a 

resolution of 1 mm3. The dataset also contains lesion 

volumes labeled for each patient. 

 
The heads are segmented into five classes: white matter, 

gray matter, cerebrospinal fluid (CSF), skull, and other 

parts. Strokes are simulated by labeled lesions and circles 

generated by ourselves. Different values of complex 

permittivity are assigned to the five classes according to the 

Gaussian distribution shown in Table 1. 

 

Table 1. Complex permittivity of the numerical head. 

 

Class Real part* Imaginary part @ 

1GHz* 

Skull (8, 0.3) (3, 0.3) 

White matter (40, 1.0) (11, 1.0) 

Gray matter (52, 1.0) (17, 1.0) 

CSF (63, 1.5) (44, 1.5) 

Hemorrhagic -

stroke 

(60, 1.0) (17, 1.0) 

Ischemic -

stroke 

(35, 1.0) (15, 1.0) 

Other (44, 0.3) (17, 0.3) 
*The first and second terms in parentheses correspond to the mean and 

standard deviation of the Gaussian distribution. 

 
Thirty human heads are processed in total. Twenty-five 

heads are used for training the VAE. The other five heads 

are used for validating the VAE and the data inversion 

algorithm. 

 

4.2  Training and Test of the VAE 
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The VAE is trained self-supervised. The loss function is[5]  
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where m is the label, m� is the output of the VAE, μ and v is 

the mean and variance of the encoded Gaussian distribution, 

respectively, Q is the length of the code vector, and λ is the 

regularization factor.  

 

Among the 125,000 images generated based on the twenty-

five heads, 90% and 10% are used for training and testing, 

respectively. We set the length of the code vector to 96, the 

number of training epochs to 20, and the size of input batch 

to 60. The starting learning rate is 5e-5 and decays 

exponentially. The average reconstruction loss of a training, 

test, and validation batch are 12.3, 14.3, and 14.5, 

respectively. It indicates that the VAE can encode and 

decode accurately without overfitting. 

 

4.3  Brain Stroke Imaging 
 

The test 3-D head models are discretized by 300×300×
300 voxels for electromagnetic modeling. There are seven 

circles of antennas around the head, the number of antennas 

being 8, 8, 8, 12, 14, 14, and 14 from top to bottom. FDTD 

method is applied to simulate the measurement. 5% 

Gaussian white noise is added to the simulated data. The 

inversion frequency is 0.8, 0.9, and 1.0 GHz. 

 

The first example shows the reconstruction of a normal 

head. The true distribution of complex permittivity on the 

transverse, sagittal, and coronal plane is shown in Figure 2.  

 

 
(a) 

 
(b) 

 

Figure 2. The ground truth of a normal head. (a) Real part 

of complex permittivity. (b) Imaginary part of complex 

permittivity. 

 
Inversion results using the proposed method and the voxel-

based method are shown in Figure 3 and Figure 4, 

respectively. Both methods adopt a 100×100×100 mesh 

for forward modeling and inversion. It is observed that the 

structural information in Figure 3 is much clearer than that 

in Figure 4. The structural similarity (SSIM) with the 

ground truth of the two methods is 0.76 and 0.67, 

respectively.   

 

 
(a) 

 
(b) 

 

Figure 3. Reconstructed permittvity of the proposed 

method (normal head). (a) Real part of complex 

permittivity. (b) Imaginary part of complex permittivity. 

 

 
(a) 

 
(b) 

 
Figure 4. Reconstructed permittvity of the voxel-based 

method (normal head). (a) Real part of complex 

permittivity. (b) Imaginary part of complex permittivity. 

 

 
(a) 

 
(b) 

 

Figure 5. The ground truth of an ischemic stroke head. (a) 

Real part of complex permittivity. (b) Imaginary part of 

complex permittivity. 



 

The second example shows the reconstruction of an 

ischemic stroke head. The transverse, sagittal, and coronal 

planes of the head are shown in Figure 5. The complex 

permittivity of the stroke is 33.9-15.8j.  

 

 
(a) 

 
(b) 

 

Figure 6. Reconstructed permittvity of the proposed 

method (ischemic stroke). (a) Real part of complex 

permittivity. (b) Imaginary part of complex permittivity. 

 

 
(a) 

 
(b) 

 

Figure 7. Reconstructed permittvity of the voxel-based 

method (ischemic stroke). (a) Real part of complex 

permittivity. (b) Imaginary part of complex permittivity. 

 

Inversion results of the ischemic stroke using the proposed 

method and voxel-based method are shown in Figure 6 and 

Figure 7, respectively. Both methods show the existence of 

the stroke, but the proposed method can recover the 

structure and electrical properties more accurately. It is also 

observed that the conductivity image of the voxel-based 

method is difficult to be used for stroke evaluation.  The 

SSIM of the two methods is 0.75 and 0.62.  

 

The proposed method significantly reduces the number of 

unknowns and accelerates the imaging process. For 

instance, the number of unknowns in the two methods is 

19600 and 268069, respectively. The time of solving the 

matrix equation is 0.08s and 200s, respectively. Inversion 

in the feature space achieves a 3.6% compression rate and 

four-order acceleration.  

  

5 Conclusion 

 
We propose a microwave data inversion method in feature 

space for brain stroke imaging. The VAE is applied to 

compress voxel-based heads into latent codes in the feature 

space. A dataset of head models characterized by 

permittivity and conductivity is constructed from MRI 

images for training and validation. In data inversion, the 

optimal codes are sought by minimizing a regularized data 

misfit function. Parallelization on GPUs is applied to 

accelerate the inversion algorithm. Compared with the 

conventional voxel-based method, the proposed method 

can achieve a nearly 25% higher structural similarity and 

four-order acceleration of the solution process using a 3.6% 

number of unknowns. 
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