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Abstract

We describe a new methodology of calculating the elec-
trostatic field enhancements in the near-field of structures.
This method is then used to calculate the fields near build-
ings of several different heights. We compare the relative
enhancements with the heights of those buildings and sev-
eral models which attempt to predict lightning strike occur-
rences to buildings as functions of their height. It is shown
that our model matches results from data of lightning strikes
to isolated buildings vs. their heights. We take our model
further to discuss the effect that several buildings surround-
ing one another has on these solutions and the likelihood of
strikes to each structure.

1 Introduction

The development of a lightning leader and its path of prop-
agation are largely determined by the shape and magnitude
of the electric field between the storm-cloud and the surface
of the earth [1]. For this reason, the solution to Laplace’s
equation in the space between these locations is a desired
result. Unfortunately, numerical techniques for the solu-
tion to this class of problems are often cumbersome, inac-
curate, or take a very long time to compute. It is for this rea-
son that researchers will often utilize statistical approaches
to generate empirical equations which map parameters like
building height, and lightning strike density to the expected
number of strikes to a structure per year [2]. We present
in this paper a novel methodology of solving for the elec-
trostatic field enhancements in the vicinity of structures
using a boundary relaxation technique [3] that allows for
the solution of the fields around these structures as though
they were in free space and above an infinite and perfect-
conducting ground-plane. We use this solution to derive a
function which relates building height to expected number
of lightning strikes. We then use this tool to investigate the
mutual coupling effects between adjacent structures.

Section 1 of this paper will describe the modeling method-
ology. Section 2 will use the model to investigate the rela-
tionship between isolated building structure heights and the
expected number of strikes to those buildings, in which we
compare our results with other empirically-derived equa-
tions and data. Section 3 will discuss further applications
of this model applied across cityscapes composed of several
adjacent structures whose mutual field coupling degrades

the accuracy of previous empirical calculations.

2 The Numerical Solution to Laplace’s
Equation Using Boundary Relaxation

The electric potential in the vicinity of a conductor may be
found via the solution to Laplace’s equation

∇
2
Φ = 0 (1)

and from there the electric field may be found as

E⃗EE =−∇Φ (2)

There are many numerical techniques for the solution of
eq. 1 which are well-known [4]. The general form of each
starts by discretizing the solution space into a set of numer-
ical voxels, each of which are defined by a location, some
physical properties, and perhaps a potential of their own,
then defining the appropriate boundary conditions on the
device-under-test (DUT) and the grid space boundary itself.
After that, all of these numerical values are put into a ma-
trix and that matrix is solved iteratively over the numerical
form of eq. 1, which is

Φ(i+1, j,k)+Φ(i−1, j,k)+Φ(i, j+1,k)
6

+
Φ(i, j−1,k)+Φ(i, j,k+1)+Φ(i, j,k−1)

6
= Φ(i, j,k)

(3)

in a simple geometric case, where the discrete points (i, j,k)
correspond to the cartesian coordinates (x,y,z). Over the
course of the iterative solution, the potential value at the
DUT is held to the electric potential boundary condition,
typically

Φ(⃗rrr′) = 0 (4)

where r⃗rr′ is the location of the conductor.

The proper treatment of the grid space boundary condi-
tion is often a source of complexity or error, especially
when these solutions are supposed to represent the field
around some object in open space. Recall that the analyt-
ical solution to these open space problems takes eq. 4 and
Φ(⃗rrr → ∞) = 0, where r⃗rr is the observation point. In a com-
puter, however, we are not capable of defining our solution
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space out to infinity and so we are left to define a bound-
ary condition which must be held fixed on the grid space
boundary, and this translates physically to the grid space
boundary acting as a conductor.

One of the simpler techniques employed to improve this er-
ror is to move the grid boundary further and further away
from the DUT. Each expansion of the grid space has the
desired effect of lowering the error incurred by the finite
grid space, but the solution computation time grows pro-
portionally to the cube of this grid space expansion and
the answer is still wrong regardless of how far one may
stretch the space. Annulus methods such as ballooning, the
infinite/infinitesimal elements methods, and various spatial
transforms are other iterative-type solutions. There are also
non-iterative forms such as asymptotic boundary conditions
(ABC) and the measured equation of invariance (MEI) ap-
proach. An in depth discussion of each is beyond the scope
of this paper, but are found in the review by [5]. The major-
ity of these solutions are purely numerical, require lengthy
computation times, may not converge at all, and are of-
ten still approximations. We solve this problem by using
a boundary relaxation technique [3].

Assume we have solved Laplace’s equation around some
DUT in an otherwise uniform, vertical electric field, and
have not attempted to deal in any way with the grid space
boundary potential; we simply hold the potential on the
grid space boundary at the uniform, vertical field potential.
Holding this potential fixed physically translates to this lo-
cation in the simulation space functioning as though it were
itself a conductor. This means that the surface charge den-
sity produced on the DUT as a result of the uniform elec-
tric field will produce an image charge density on the grid
space boundary. We use the surface charge density on the
conductor to subtract away the image charge density on the
grid boundary. After doing so, we run through the solution
of Laplace’s equation again with our newly calculated grid
space boundary condition. We repeat this process several
times until virtually no image charge is produced and the
solution has converged on the free space solution.

The method by which we remove the image charge density
uses the potential from the charge density on the DUT, ρs.
After solving Laplace’s equation once, we calculate ρs, and
from there we calculate the potential ρs produces at the grid
boundary by

Φ∆ =
1

4πε0

∫
S′

ρs

|⃗rrr− r⃗rr′|
dS′ (5)

where ε0 is the permittivity of free space, and S′ is the DUT
surface. We add that to initial grid boundary condition, such
that the new grid boundary potential is

Φn+1 = Φn +Φ∆ (6)

where Φn is the initial grid boundary condition and Φn+1 is
the grid boundary condition for the next Laplace iteration
which has discounted evermore image charge density.

Figure 1. Left: The solution to Laplace’s around a cube.
Center: The same solution using boundary relaxation.
Right: The percent difference of the two solutions.

Although this method does require the solution to Laplace’s
equation several times, with 5 total boundary relaxation it-
erations appearing to be the ideal amount, we are able to
move the grid boundary arbitrarily close to the DUT, pro-
viding at least a few grid cells for the update equations in
eq. 3. Recalling that lengthening and shortening of the grid
space varies the simulation time by the third power of the
spatial change, it is of little consequence that we must it-
erate Laplace’s equation several times because these multi-
ple iterations only linearly increase the computation time,
where it is already decreased by a power of three versus
other methods. Iterations after the first solution also take
substantially less time when previous potential values are
recycled in the solution.

Figure 1 shows an example solution of Laplace’s equation
with no manipulation to the grid space boundary on the left
(Ez1), 5 boundary relaxations in the middle (Ez2), and the
percent difference between the two solutions on the right.
We see on the left that the fields between the DUT and the
grid space boundary are much larger on the top and bottom
and much smaller on the left and right. This effect is due
to the presence of the image charge. We also see that the
percent difference in solution is the largest on the side of
the cube closest to the grid space boundary.

3 The Relation of Lightning Strike Number
to Structure Height

It is well understood that an increase in height of a struc-
ture leads to an increase in that sturcture’s likelihood of be-
ing struck by lightning [6]. The increase in height leads
directly to an increase in the electric field enhancements at
the structure’s top. The electric field between the start of the
strike and its end is a crucial determinant of its strength and
the path the strike will take. Given the probabilistic nature
of a lightning strike happening, and its path, these enhance-
ments only make it more likely that lightning may strike
and are not an analytical predictor of when and where.

The calculation of the electric field between the cloud and
structure is often a very complicated computation. It is
the solution of Laplace’s equation in the region, and the
more accurate solutions will include distinct building fea-
tures like structures on top or in the vicinity. Because of
the complex nature of this computation and the many other
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factors leading to a lightning strike in a given location, re-
searchers will often take an empirical approach and match
data findings with a type of equation.

The researchers in [2] take this approach using data over
a given region of the city of Hong Kong. They compare
a data-fit equation with three other well-known equations.
Those four equations are

Ns1 = 153×10−6Ng × (h+15)4/3 (7)

Ns2 = 640×10−6Ng × (h)1.2 (8)

Ns3 = 2106×10−6Ng × (h)0.96 (9)

Ns4 = h0.74 (10)

where Ng is the number of ground flashes per sq. km per
year and h is the height of the building. The fourth equation
is derived using the data from lightning strikes to tall build-
ings in Hong Kong [2], whereas the first 3 are empirically
based from multiple data sets in various locations. Being
that the electric field is closely related the Ns, and Ns is also
a function of height, it should be the case that the trend
present in electric field enhancement vs. height resembles
the trend present in Ns vs. height.

We model the electric field enhancements in the presence
of 5 isolated towers from 50-250m in height and each 12m
in length and width, which is shown in Figure 2. We see
that the field at the top of each building increases with in-
creasing height by a substantial amount. The mean value of
the electric field enhancement at the top of each building is

Em(h)=
1
N ∑

x′,y′

√
Ex(x′,y′,h)2 +Ey(x′,y′,h)2 +Ez(x′,y′,h)2

(11)
where the sum over x′ and y′ includes all grid cells, N, at
the height, h. We now take eqs. (7-11) and divide each by
their own sums as

N′
s1 =

153×10−6Ng × (h+15)4/3

∑h Ns1(h)
(12)

... (13)

N′
s5 =

Em(h)
∑h Em(h)

(14)

so that the dependence on model parameters like Ng is re-
moved and the resulting functions are probabilistic in nature
and thus directly comparable.

Figure 3 shows the results of these calculations over the
heights 50-250m in the top plot, as well as the percent er-
ror between our methodology and the 4 other equations in
the bottom plot. We see that the error between our model
and Ns1, Ns2, and Ns3 suggests a fairly good fit for build-
ing heights between 150-250m, and that the match between
our model and the data-driven model, Ns4, is a nearly per-
fect match with an error of less than 1% for all heights.

Figure 2. The field enhancements in the vicinity of five
buildings of various heights.

Figure 3. Top: The number of lightning strikes expected
vs. height for three general equations, one case-study equa-
tion, and our model. Bottom: The percent between each
equation and our model.

This suggests that the field enhancements calculated by our
model offer an incredible tool for the prediction of light-
ning strikes to structures in an analytical way, as opposed
to empirical. Further, our model has the capability to con-
sider very complex structure geometry with relative ease
and simulations of moderate size can be run on most per-
sonal computers.

4 The Probability of Lightning Strikes to
Buildings Over a City-Scape

The previous section showed that our modeling method-
ology is capable of predicting the relative occurrence of
lightning strikes to isolated buildings as a function of their
heights. A further complication arises in these techniques
when structures are in close proximity to other structures of
comparable height and the empirical equations of the pre-
vious section were derived in cases where buildings were
largely isolated from others.

Figure 4 shows an example cityscape where 5 of the 12
buildings are the equivalent height of the isolated models
of section 3, but are surrounded by other buildings of vari-
ous heights, some of which have structures on top or varied
widths. We show in Figure 5 the field enhancements on top
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Figure 4. An example cityscape for our lightning predic-
tion model.

Figure 5. The field enhancements at the top of every build-
ing, with 1-5 labelled and corresponding to heights 50-
250m.

of the 12 buildings, 5 of which are labelled 1-5 that cor-
respond to buildings with heights of 50-250m. The results
shown indicate that mutual coupling effects tend to min-
imize field enhancements in locations on buildings which
are adjacent to other buildings. For instance, the structure
to the southeast of building 5 has a significantly higher field
enhancement in it southeast corner vs. its northwest corner.
This effect is known as shielding and is well-known [7].
These results suggest that we can use our modeling tool to
directly calculate this shielding effect analytically and with
robust structure detail in the future.

5 Conclusion

We have described a novel methodology of solving for the
electric field enhancements at the surface of conductors

in a more accurate and faster way than many other meth-
ods. This methodology is used to derive a lightning strike
prediction vs. height function which, when compared to
other models and data, matches real-world data exception-
ally well. We have proposed this model’s use in the pre-
diction of lightning strikes over a cityscape, where previous
methods lack the ability to account for the mutual coupling
and shielding effects between buildings of similar heights
which are close together.

References

[1] N. I. Petrov and R. T. Waters, “Determination of the
striking distance of lightning to earthed structures,”
Proc. R. Soc. Lond. A, vol. 450, pp. 589–601, 1995.
DOI: 10.1098/rspa.1995.0102.

[2] N. I. Petrov and F. D’Alessandro, “Assessment of pro-
tection system positioning and models using observa-
tions of lightning strikes to structures,” Proceedings of
the Royal Society of London, vol. 458, pp. 723–742,
2002. DOI: https://doi.org/10.1098/rspa.
2001.0906.

[3] F. Sandy and J. Sage, “Use of finite difference ap-
proximations to partial differential equations for prob-
lems having boundaries at infinity,” IEEE transactions
of microwave theory and techniques, vol. 19, no. 5,
pp. 484–486, 1971. DOI: 10 . 1109 / TMTT . 1971 .
1127551.

[4] K. E. Atkinson, An Introduction to Numerical Analy-
sis, 2nd ed. John Wiley & Sons, Inc., 1976, pp. 507–
571.

[5] Q. Chen and A. Konrad, “A review of finite element
open boundary techniques for static and quasi-static
electromagnetic field problems,” IEEE Transactions
on Magnetics, vol. 33, no. 1, pp. 663–676, 1997. DOI:
10.1109/20.560095.

[6] V. Cooray, U. Kumar, F. Rachidi, and C. A. Nucci,
“On the possible variation of the lightning striking dis-
tance as assumed in the iec lightning protection stan-
dard as a function of structure height,” Electric Power
Systems Research, vol. 113, pp. 79–87, 2014, ISSN:
0378-7796. DOI: https://doi.org/10.1016/j.
epsr.2014.03.017.

[7] Z. Su, W. Lyu, L. Chen, et al., “Shielding effect of sur-
rounding buildings on the lightning-generated vertical
electric field at the top of a tall building,” IEEE Trans-
actions on Electromagnetic Compatibility, vol. 61,
no. 1, pp. 174–182, 2019. DOI: 10 . 1109 / TEMC .
2018.2790346.

This paper’s copyright is held by the author(s). It is published in these proceedings and included in any archive such as IEEE
Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly
Work.”


