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Abstract

This paper presents an efficient implementation of the
vector-output kernel Ridge regression (KRR). The pro-
posed approach is applied to model the frequency-domain
behavior of the magnitude of the transfer function of a para-
metric high-speed link as function of 11 parameters. The
accuracy and the computational cost of the proposed tech-
nique are assessed on noisy samples and compared with the
ones of a state-of-the-art modeling technique based on the
combination of the principal components analysis (PCA)
and the least-squares support vector machine (LS-SVM) re-
gression.

1 Introduction

During the last decades, machine learning (ML) techniques
have emerged as one of the top approaches for regression
and classification problems with a widely range of appli-
cations. Within the electrical and electronic field, kernel-
based ML regressions, such as (SVM) regression [1], least-
squares support vector machine (LS-SVM) regression [2],
kernel Ridge regression (KRR) and its variants [3, 4], have
shown interesting performance for the modeling of elec-
tronic and electromagnetic (EM) structures. The above
techniques allow to build accurate and fast-to-evaluate para-
metric models, also known as surrogate models, of the re-
sponses of electronic devices and EM structures starting
from a small set of training samples. The obtained sur-
rogate models are known in closed-form, thus providing a
fast-to-evaluate and efficient alternative to computer exper-
iments (e.g., simulations) in computationally expensive de-
sign tasks such as uncertainty quantification and optimiza-
tion [5].

Indeed, kernel-machine regressions allow to build non-
parametric surrogate models, in which the number of un-
knowns are independent from the number of input parame-
ters considered by the model [5]. Moreover, they rely on a
linear model structure in which the model unknowns can be
estimated from the solution of a convex optimization prob-
lem [6], thus leading to a faster training time and improved
accuracy with respect to regression model trained via artifi-
cial neural network (ANN) [2, 7].

On the other hand, different from ANN structure, stan-
dard formulation of kernel machine regressions is limited

to single-output problem, thus making their direct applica-
tion to multi-output scenarios rather cumbersome. Unfor-
tunately, multi-output or vector-valued problems are quite
common in electronic applications. For instance, we might
be interested to model the parametric frequency- or time-
domain behavior of an electronic device as a function of
its internal parameters. The above problem can be tackled
via a scalar-valued regression, but it would require to train
a possible huge number of uncorrelated scalar-output mod-
els, one for each output components (i.e., frequency or time
samples). Moreover, the above approach unavoidably ig-
nores any correlation among the output components, com-
promising its accuracy and robustness to noise [8]. A clever
workaround to the above issues consists in compressing the
output-dimension via a compression techniques such as the
principal component analysis (PCA). The resulting com-
pressed representation of the output components allows to
heavily reduce the number of single output regression prob-
lems to be solved, with beneficial effects on the training
cost [9]. However, such manipulation of the training set
can lead to generalization issues with a possible leak of ac-
curacy, when a small set of components is considered [3].

As an alternative to the above approach, a generalized
multi-output formulation of the KRR has been presented
in [3, 4]. Such approach can be directly applied to tackle
multi-output regression problems without requiring any
data manipulation. However, despite its improved accuracy
with respect to state-of-the-art approaches based on data
compression, a plain implementation of the such general-
ized KRR had shown a high training cost. Indeed, for the
former methods the model training requires the solution of
a large linear system.

This paper presents an efficient implementation of the
vector-valued KRR (inspired by [10]) based on the diag-
onalization of its constitutive equations. The effectiveness
and the robustness to noise of a proposed technique are in-
vestigated on the prediction of the magnitude of the fre-
quency response of a high-speed link with 11 uniform dis-
tributed parameters by considering a noisy training set. The
model performance are then compared with the ones of
a state-of-the-art technique combining PCA compression
with the LS-SVM regression [9].
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2 Vector-Valued Kernel Ridge Regression

Let us consider the problem of building a generic vector-
valued surrogate model f̂ff : X→ Y, starting from the infor-
mation available on the training set D = {(xxxl ,yyyl}L

l=1, such
that xxxl ∈X⊆Rp and yyyl ∈ Y⊆RD. The above problem turns
out to be equivalent to learn D scalar functions f̂ (d) :X→R
with d = 1, . . . ,D minimizing the following empirical risk
functional:

f̂ff = argmin
f̃ff∈H

D

∑
d=1

L

∑
l=1

(y(d)l − f̃ (d)(xxxl))
2 +λ∥ f̃ff∥2

H, (1)

where λ is the regularizer hyperparameter providing a
trade-off between the model flatness and accuracy on the
training set, whilst y(d)l and f̃ (d)(xxxl) represent the d-th com-
ponent of the l−th training output and the corresponding
model prediction, respectively.

According to the represented theorem for vector-valued re-
gression problem presented in [11], any optimal solution f̂ff
of (1) writes:

f̂ff (xxx) =
L

∑
l=1

K(xxx,xxxl)cccl , (2)

where f̂ff (xxx) = [ f̂ (1)(xxx), . . . , f̂ (D)(xxx)]T is a vector collecting
the model prediction for any xxx ∈ X, K(·, ·) : Rp×p → RD×D

is a multi-output kernel matrix and cccl = [c1,l , . . . ,cD,l ]
T ∈

RD are column vectors collecting the regression unknowns.

Hereafter in this paper, we will consider the following sep-
arable structure for the matrix kernel function K(xxx,xxx′):

[K(xxx,xxx′)][d,d′] = kxxx(xxx,xxx′)ko(d,d′), (3)

where kxxx and ko are scalar kernels acting independently on
the input space (i.e., kxxx : X×X → R) and on the output
dimensions (i.e., ko : {1, . . . ,D}×{1, . . . ,D}→ R).

By using (2) and (3), the empirical risk minimization
in (1) can be recast in terms of the following discrete-time
Sylvester equation:

KxxxCB+λC = Y, (4)

where Kxxx is a L×L Gram matrix computed from the input
samples {xlxlxl}L

l=1 (i.e., [Kxxx]i j = kxxx(xxxi,xxx j)), B is a D×D Gram
matrix computed on the output dimensions {1, . . . ,D}
(i.e.,[B]i j = ko(di,d j)), C = [ccc1, . . . ,cccL]

T ∈ RL×D is a ma-
trix collecting the model unknowns and Y = [yyy1, . . . ,yyyl ]

T is
a L×D matrix associated to the training output.

By using the properties of the Kronecker product, the so-
lution of the discrete-time Sylvester equation in (4) can be
recast as the solution of a linear system of equations [12].
Unfortunately, the above formulation leads to a huge linear
system with (LD)× (LD) equations, which solution would
require a computation cost proportional to O(L3D3). Such

training cost can be heavily reduced by diagonalizing the
kernel matrices Kxxx and B [10], i.e.,:

Kxxx = UΛUT and B = TMTT , (5)

where U ∈ RL×L and T ∈ RD×D are matrices collecting
the eigenvectors of the matrices Kxxx and B, respectively,
whereas Λ ∈ RL×L and M ∈ RD×D are diagonal matrices
collecting the corresponding eigenvalues. Using the defini-
tions in (5), the Sylvester equation in (4) can be rewritten
as:

ΛC̃M+λ C̃ = Ỹ (6)

where C̃ = UT CT and Ỹ = UT YT are new transformed
matrices collecting a transformed version of regression un-
knowns and source term, respectively. Due to the diago-
nal structure of (6), a generic entry of the unknown matrix
[C̃]i j = ci j can be suitably computed via a scalar equation
defined by the diagonal eigenvector matrices Λ and M, such
as:

c̃i j =
ỹi j

[Λ]ii[M] j j +λ
. (7)

Once the entries of the matrix C̃ has been computed via
the above equation, the original unknown matrix C can be
reconstructed as:

C = UC̃TT . (8)

The above approach for solving the discrete-time Sylvester
equation turns out to be more efficient than the equiva-
lent solution based on the Kronecker formulation [12] pre-
sented in [3]. Indeed, since the diagonalization is applied
on the matrices Kxxx and B separately, the computational cost
required for the model training reduces from O(L3D3) to
O(L3 +D3 +L2D+LD2), thus leading to beneficial effect
on the training time when the product L×D is large.

3 Application Example: High-Speed link

The effectiveness of the proposed implementation of the
vector-valued KRR are investigated on the prediction
of the magnitude of the frequency response H(xxx; f ) =

E(f)
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Figure 1. Structure of High-speed link [2] considered in
Sec. 3.
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Table 1. Mean value and corresponding relative range of
variation of the 11 parameters of the high-speed in Fig. 1.

Parameter Mean Value Uniform Variation
C1(x1) 1pF 50%
C2(x2) 0.5pF 50%
L1(x3) 10nH 50%
L2(x4) 10nH 50%
εr(x5) 4.1 1%
w(x6) 252 µm 1%
t(x7) 35 µm 1%
h(x8) 60 µm 1%

Len1(x9) 5cm 10%
Len2(x10) 3cm 10%
Len3(x11) 3cm 10%

Vout(xxx; f )/E( f ) of the high-speed link in Fig. 1, in a fre-
quency bandwidth from 1MHz to 2GHz as a function of
11 parameters. The mean value and range of variability of
the considered parameters are provided in Tab. 1.

Such variability is induced by means of the normalized pa-
rameters collected in the vector xxx = [x1, . . . ,x11]

T , in which
each parameter xi ∼ U([−1,+1]) is considered as an uni-
formly distributed random variable. The accuracy and train-
ing time of the proposed vector-valued KRR are then com-
pared with a state-of-the-art modeling technique consisting
on the combination of the PCA and the LS-SVM regres-
sion [9].

The considered high-speed link structure has been imple-
mented in MATLAB. The MATLAB implementation is
used to generate the training and test pairs (xxxi,yyyi), in which
yyyi = [|H( f1;xxxi)|, . . . , |H( fD;xxxi)|]T , based on a latin hyper-
cube sampling (LHS) scheme by considering D = 150 lin-
early spaced frequency points { fk}D

k=1.To stress the perfor-
mance of the considered modeling approaches, the training
output set {yyyl}L

l=1 has been synthetically corrupted by an
additive noise, i.e.,

y( f j;xxxl) = |ℜ{H( f j;xxxl)}(1+ζ
ℜ
j )+

+ℑ{H( f j;xxxl)}(1+ζ
ℑ

j )|, (9)

where j = 1, . . . ,D and ζ
ℑ

j ,ζ
ℜ
j ∼ U([−σn,σn]) represent

a set of uncorrelated uniform distributed random variables
defining the additive noise with a noise level σn = 0.05
affecting the real and imaginary part of the frequency re-
sponse H(xxx; f ).

The obtained training set is then used to train two different
surrogate models built via the proposed implementation of
the vector-valued KRR and the PCA+LS-SVM regression.
Similar to [3, 4], the the vector-valued KRR is trained by
using a radial basis kernel for both input parameters and
output dimensions. The model hyperparameters are tuned
via a 3-fold cross-validation. For the model based on the

Table 2. Relative L2-error and training time computed
from the predictions in dB obtained by the proposed vector-
valued KRR and PCA+LS-SVM regression trained with in-
creasing number of noisy training samples.

Methods L = 30 L = 90 L = 150
εL2 ttrain εL2 ttrain εL2 ttrain

KRR 4.0% 25s 2.8% 38s 2.5% 51s(Proposed)
PCA+LS-SVM 7.5% 6s 5.0% 33s 4.3% 63s(Rel.Tol.=0.01%)
PCA+LS-SVM 6.8% 1.5s 5.9% 1.5s 4.6% 2s(Rel.Tol.=0.6%)

PCA-LS-SVM regression two different compression lev-
els have been considered by using a the relative tolerance
of 0.6% and 0.01% for the PCA compression, leading to
a compressed model with either 2 or 100 components, re-
spectively.

Table 2 provides an exhaustive comparison between the
above methods in terms of training time and relative L2-
norm error computed in dB on 1000 test samples for an
increasing number of the training samples (i.e., L = 30, 90
and 150). The results show that the computational cost re-
quired to built a vector-valued model with the proposed ef-
ficient implementation of the multi-output KRR turns out to
be comparable with the one required by the PCA+LS-SVM
with a relative tolerance of 0.01%. It is important to no-
tice that the proposed implementation of the vector-valued
KRR has a speed up of ×30 with respect to its plain imple-
mentation proposed in [4].

Concerning the model accuracy, the errors reported in the
table clearly highlight the improved performance of the pro-
posed vector-valued KRR with respect to the ones achieved
by the PCA+LS-SVM for all the considered training sets.
The above statement is further supported by the parametric
plot in Fig. 2 computed from the predictions of the con-
sidered methods trained with L = 150 training samples for
two random configurations of the input parameters belong-
ing to the test set. The plot clearly highlights the limited
capability of the PCA compression to learn the actual cor-
relation among the output components when the data are
corrupted by noise. Indeed, the compressed representation
of the training set obtained from the PCA still contains a
non-negligible level of noise, which cannot be filtered out
even if a small number of components is considered. On the
other hand, thanks to the output dimension regularization
provided by the kernel ko in (3), the corresponding model
trained via the proposed vector-valued KRR turns out to be
more accurate and robust to noise.

Moreover, Figure 3 shows a statistical comparison among
the methods in terms of the probability density functions
(PDFs) computed on 1000 test samples for all the frequency
points. Also in this case, it is possible to notice the detri-
mental effect of the noise on the predictions obtained by the
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Figure 2. Parametric plots comparing the frequency
responses predicted by the proposed method and the
PCA+LS-SVM surrogate models for 2 different realizations
of the input parameters.

Figure 3. Comparison of the PDFs computed from the pre-
dictions of the surrogate models built via the proposed and
PCA+LS-SVM regression with Tol.= 0.6% and 0.01% on
1000 test samples and for all the frequency points.

PCA+LS-SVM models, which is responsible for the spuri-
ous peaks visible in the corresponding PDFs around -18 and
-16 dB.

4 Conclusions

This paper presented an efficient implementation of the
vector-valued KRR.Its feasibility and performance have
been investigated on a parametric and stochastic scenario
by considering the magnitude of a frequency response of an
high-speed link as a function of 11 parameters. The perfor-
mance in terms of accuracy, computational cost and robust-
ness to noise of the proposed technique are compared with
the ones of a state-of-the-art modeling techniques based on
the combination of the PCA and LS-SVM regression for
noisy training samples. The results highlight the potential-
ity of the proposed method as well as its improved accuracy
in noisy scenarios.
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