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Abstract 
 

A machine-learning classification algorithm was 
developed to classify compact intracloud discharges 
(CIDs), also known as narrow bipolar events (NBEs), 
based on electric field waveforms recorded by Earth 
Networks Total Lightning Network (ENTLN) sensors. The 
classification accuracy of the model is about 95%, which is 
consistent with the accuracy additionally determined based 
on two independent validation datasets. From February to 
November 2022, a total of 10.4 million NBEs were 
detected by the ENTLN on a global scale, which account 
for 0.8% of all classified lightning events. The percent of 
lightning events that are NBEs is 1.1% in tropics, which is 
about double the 0.58% in mid-latitudes. We also found the 
strong latitude dependence of NBE percentage in the 
CONUS and Australia. The factors that cause the 
tropic/mid-latitude contrast as well as the latitude 
dependence remain to be investigated. 
 
1 Introduction 
 
Compact intracloud discharges known as narrow bipolar 
events (NBEs) are electrical discharges inside the cloud 
that are characterized by a relatively narrow (a few tens of 
microseconds) bipolar field pulse in low frequency (LF) 
band (e.g., [1]), powerful radiation in high frequency (HF) 
and very high frequency (VHF) bands (e.g., [2]), and 
inferred short (less than 1 km) channel length (e.g., [3]). 
Strong radio signals of NBEs have been routinely detected 
from a long distance by both ground and space-borne 
instruments (e.g., [4], [5]). 
 
NBEs usually occur in isolation or at the beginning of a 
regular lightning flash [6], suggesting that some of them 
are closely tied to the lightning initiation processes (e.g., 
[7], [8]). Recently, based on the measurements of the 
Atmosphere-Space Interactions Monitor (ASIM), NBEs 
were found to be associated with blue corona discharges 
close to or above the top of thunderclouds (e.g., [9], [10]). 
 
2 Earth Networks Total Lightning Network 
 

The ENTLN consists of over 1,800 sensors deployed all 
over the world that detect wideband (1 Hz to 12 MHz) 
electric field signals emitted by lightning [11]. The electric 
field signals recorded by the sensors are non-linearly 
decimated, and then continuously sent back to the central 
processor, where the geolocation of lightning is 
implemented in real-time using the time-of-arrival (TOA) 
technique. On average, the ENTLN reports about 50 
lightning events per second worldwide [12]. For each 
lightning event, time of occurrence, geolocation, event 
type, and peak current estimate are reported. 
 
3 NBE Classification 
 
The core of the NBE classification procedure is similar to 
the one used by Cordoba Marx Meter Array to classify 
cloud-to-ground and intra-cloud lightning [13]. Key 
aspects of the classification algorithm are described as 
follows. 
 
3.1 Classification model 
 
The classification model for the NBE classification is 
based on Support Vector Machines (SVMs). SVMs are a 
set of versatile and powerful supervised machine-learning 
models that can be used for linear or nonlinear 
classification. A nonlinear kernel was chosen for the NBE 
classification model. The core concept of SVMs is that its 
optimization objective is to maximize the distance between 
the decision boundary and data points that are closest to the 
decision boundary. The output of the model is binary (NBE 
vs. non-NBE). 
 
3.2 Distance constraint 
 
Only pulses from stations contributing to the geolocation 
of the lightning event and also within 600 km of the event 
were used for classification. The 600-km distance 
constraint was set because we found that distant NBE field 
pulses tend to be wider (due to the propagation over lossy 
ground) than the typical narrow bipolar pulses, and were 
harder to distinguish from other lightning pulses (e.g. 
initial breakdown pulses). In order to make the 



classification more reliable, pulses from stations beyond 
600-km are not classified. 
 
3.3 Preprocessing 
  
We first truncated the raw decimated waveform using a 
100-μs window (centered on the pulse peak). Then pre-
check procedures were implemented to discard saturated 
pulses and also pulses without enough data points. 
Specifically, the initial half cycle and the overshoot of the 
pulse each need to have each more than five data points. 
Then raw decimated waveform in the window was linearly 
interpolated to 1 MHz. The pulse was normalized so that 
the peak amplitude is 1 (for positive pulses) or -1 (for 
negative pulses), where positive pulses correspond to 
negative charge moving up and negative pulses correspond 
to negative charge moving down. The 101 samples in the 
100-us window are used as features to training the model. 
Examples of waveforms of NBEs of both polarities are 
shown in Figure 1. The raw decimated waveforms are 
shown in black dots while interpolated waveforms are 
shown in blue line. 
 
 

 
Figure 1.. Example waveforms of a –NBE (left) and a 
+NBE (right). 

 
3.4 Dataset used for training and testing  
 
The dataset used for testing and training consists of a total 
of 24,000 manually classified pulses evenly distributed in 
4 categories (-NBE, -non-NBE, +NBE, +non-NBE). As 
mentioned before, only pulses from stations within 600-km 
of a lightning event were included. We trained a 
classification model individually for positive and negative 
pulses. 
 
3.5 Model Performance 
 
The classification model was trained and tested using a 4-
fold cross-validation for tuning the hyper-parameters and 
evaluating the performance of the model. The average 
classification accuracies were 96% and 95% for negative 
and positive pulses, respectively. 
 
 
 

3.6 Independent Validation 
 
The classification accuracy was additional validated 
against two NBE datasets both recorded in Florida in 2022. 
The first dataset comprises 30 –NBEs recorded by the 
electric field sensors at the Lightning Observatory in 
Gainesville (LOG), Florida [14]. All of them were 
correctly classified as –NBEs by our model. The second 
dataset comprises a total of 494 +NBEs recorded by the 
low-frequency magnetic field sensor at Florida Institute of 
Technology, which were identified using an independent 
machine-learning model developed by Pu et al. [15]. It was 
found that 94% of 494 +NBEs were also classified as 
+NBEs by our model. 
 
4 Initial results 
 
From February to November 2022, a total of 10.4 million 
NBEs were identified, which account for 0.8% of total 
lightning events that were classified. Note that not all 
lightning events detected by the ENTLN were classified 
because of the distance constraint introduced in Section 
3.2. The number of NBEs detected by the ENTLN is shown 
with a spatial resolution of 1° by 1° in Figure 2. Due to the 
limited coverage as well as the distance constraint, NBEs 
in some land regions (e.g., Amazon, Eastern Europe, and 
Northern Africa) and over deep oceans are not detected. 
One can see that the contiguous United States (CONUS), 
Argentina, Bangladesh, Southeastern Asia, and Northern 
Australia are regions with most NBEs. However, the 
number of NBEs is biased due to the detection efficiency 
of the ENTLN, which is not uniform across all regions that 
are covered.  
  
To mitigate the influence of the detection efficiency, the 
percent of all classified events that are NBEs in 1° by 1° 
bounding box is calculated and shown in Figure 3a. We can 
see clear contrast in NBE percent in tropics (0°-23.5°) and 
mid-latitudes (30°-60°) and most of the NBE hotspots are 
in tropics. The overall NBE percent in tropics is 1.1%, 
which is about double the 0.58% in mid-latitudes. We also 
zoom in the CONUS and Australia, where the ENTLN has 
continuous coverage and very high detection efficiency, to 
determine the NBE dependence on latitude, and the results 
are shown in Figures 3b and 3c. In both regions, the NBE 
percentage decreases with increasing latitude.  It is known 
that tropical regions have more lightning due to higher 
amount of moisture and heat present in the atmosphere. The 
warm, moist air in the tropics rises rapidly, leading to the 
formation of thunderstorms and lightning. Additionally, 
tropical regions are located near the equator, where the 
Earth's surface is heated most directly by the sun, leading 
to even more atmospheric instability and thunderstorm 
development. However, it is still not clear what 
meteorological factors cause the tropical thunderstorms to 
produce higher percent of narrow bipolar events. 
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Figure 2. Number of NBEs (regardless of polarity) detected by the ENTLN with a resolution of 1° by 1°. 

 
Figure 3. (a) Percent of lightning events that are NBEs with a resolution of 1° by 1°. (b) and (c) Variation of NBE percent 
versus latitude in the US (CONUS) and Australia, respectively. 
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