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Abstract— The effect of loop delay on the relative stability of
first- and second-order optical phase-lock loop (OPLL) is
analyzed. The gain margin and phase margin for OPLL with
modified first-order loop filter and active low-pass loop filter are
demonstrated considering all the parameters affecting the loop
stability. The tracking performance of OPLL in terms of phase-
error variance is highlighted considering shot noise, white
frequency induced phase noise and loop propagation delay in
stable operating condition, too.
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I. INTRODUCTION

OPLL has innumerable applications in laser frequency
stabilization, coherent optical communication systems, and
low noise microwave or mm-wave generation. In last decade,
lot of research has been carried out on OPLL [1]-[6]. OPLL
has finite time-delay. The loop-delay affects the phase
response of the loop output imposing a restriction on the
higher value of the loop natural frequency due to the stability
condition [6] and the phase-error variance even at the
optimum condition rises sharply with delay. Lowering of the
loop natural frequency decreases the pull-in range, increases
the pull-in time, tracking error and phase-error variance etc.
OPLL should be operated well within the stability region. So
phase margin (PM) and gain margin (GM) are the measures of
degree of loop stability. The influence of loop-delay on the
PM of first- and second-order loops for both the discrete and
continuous time variety has already be shown by Bergman [7].
For a modified PSK homodyne optical receiver stability
analysis, the impacts of damping factor and loop-gain on the
PM has been discussed in [8]. In [9], the maximum limit of
loop propagation delay for stable operation of second-order
OPLL was reported.
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II. THEORY
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Fig. 1. Block schematic of the OPLL.

Fig.1 shows an OPLL where the local oscillator (LO) laser
phase forms the output signal. The open-loop

transmission, G(S) is given by the phase-detector gain
(K,p ), loop filter transfer function ( F (S )) and LO laser

tuning efficiency ( K, ). A first-order loop-gain function

contains one integration within the frequency tuning of the LO
laser whereas second-order contains another. So, the open-
loop transfer function of the loop is given by

G(s)

(M

fF(s)exp(-sr)

where s(: ja)) is the Laplace-variable, T is the loop delay

(sec), and K (= KPDKVCO) is the loop-gain in Hz. The
transfer function is given by
H(s):qj”(s)— G (s) 2)

¢in (g) - 1+ G (S‘)
A. Phase Margin and Gain Margin

The gain margin (GM) is the gain perturbation that makes the
system marginally stable and is measured at the phase

crossover frequency @ =@, for which ZG( ja))=—7l' ,

where, @ ), is the phase-crossover frequency [10].



1
GM =20log,, ——— - 3)
G (je,)
The phase margin ( PM ) is the negative phase perturbation
that makes the system marginally stable and is determined at

the unity-gain frequency ofG(jaJ) [10], i.e., at @ = , for

which ‘G( ]a))‘ =1, where @, is the gain-crossover
frequency. If the phase ¢(a)) of G( ]a)) exceeds — 7T rad

aw=a,, the system will be unstable By definition,

PM =7 +¢(w,). )
We first consider the first-order OPLL, i.e., F’ (S) =1.We
may write G (ja)) = LGXP (_ij) (5.1)

jo

. T
w1thLG(ja))Z—E—a)z'and|G(jw)|=5. (5.2)

1)
From (5.2), we get, @ = ——, and w, =K. (6)
P2t
Using (3), (4) and (6), we get,
GM=2010g10( z jandPM =(£—K7J . (7)
2Kt 2

Expression (7) shows that both GM and PM decreases as
normalized loop delay d (= Kt ) increases. The edges of the

stability region are determined by setting GM =0 dB and
PM =0°. So at the edge of stability, d = 77/2. In practical
systems PM of around 77/4.5 to 7/3 rad are required for
which d will be 577/18 to 77/6, respectively; and GM of 10
and 30 dB are obtained for d =0.497 and d =0.049 ,

respectively.

We next consider the modified first-order loop filter with

transfer function [6], g (s)= _r (8)
(1+sT)

where T is the filter time constant. Substituting (8) into (1)

we may write
( ]exp(—ja)r)o

K 1
2
To calculate the PM, we first calculate ‘G( ]a))‘ and equate

e — ©)
1+ joT

G(jw)=i;;

that to 1. After few steps of mathematical simplifications, we
get

w, =, F (£) where g (5):[_252 +\/mr (10)

where - |K , _o, are the loop-natural
w"( ) 5(‘ /{k) P

frequency and damping coefficient of the OPLL with the
modified first-order loop filter, respectively.
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PM can be

- (%?j—dﬁ(f)

where d (: a)nz') is the normalized loop propagation delay.

Finally, the expressed

(11

T

PM=7+¢(a,) >

To calculate the GM of the loop, we first calculate ZG ( J a))

and equate that to —7Z . After simplifications and
approximating the tangent term up to third order, one obtains,

w,=0,F, (5d)

N
where F_ (éf,d):{_3+ 22d42§d+9} (12)
and  GM =20log,, [Fw/léf“ T F? } (13)

Considering an active low-pass loop filter with transfer

function [1] g (s)= 1+ 57, (where 7, and 7, are the filter
ST,

time-constants), and using the same procedure stated earlier,

for second-order OPLL with loop propagation delay we get

1) o, F, (&),

g

n

where  F, (4‘-’):[252+,/4§4+1]% (14)
and  PM =tan"' (2£F,(&))-dF, (&) 15)
where (: 1%1) , g(z 0”%) and @, =, F,(£.d)

3(26-4d)
d3

%
} (16)
F; .
JAEF! +1
The minimum damping factor fmin that is required to achieve

a prescribed PM of OPLL with modified first-order loop filter
and active low-pass loop filter can be obtained from (11) and

where F, (f,d):{

and GM =20log,, { a7

(14), are given respectively, by,
1 %
. =[ . . } (18)
16cot”(PM )(cot"(PM)+1)
and £ :[ tan*(PM ) r, (19)
e 16(tan’(PM )+1)

B. Phase-error Variance

The OPLL performance depends on its ability to track the
phase of the incoming signal. Any error in tracking degrades
the performance, is represented by the phase-error variance.
The phase-error variance of the dither OPLL with loop
propagation delay is given by [6]

O_ézﬂjl—H(xﬂ
79, 3|

2 oo
- dx+2qRa])”)R .(|).|H(x)|2dx (20)



where AV is the summed laser line-width in Hz, P, denote
the power of received signal in W, ¢ is the electron charge in
Coulomb and R is the photo-detector responsivity in A/W.
H (x) can be obtained from (1) and (2), and x = @/@, - The

quantities on the right hand side of (20), respectively, denote
the variances due to white frequency noise induced laser phase
noise and shot noise.

III. RESULTS AND DISCUSSION

Fig. 2 shows GM gradually decreases as normalized loop
propagation delay d increases, the OPLL becomes more
susceptible to gain perturbations, both for damping coefficient
£=0.707and £ =1.0 . For low values ofd , the second-
order OPLL is slightly less susceptible to gain perturbations
than the modified first-order and for higher values ofd , the
situation is reversed. For modified first- and second-order, d

should apparently be of the order of 0.1 to 0.7 for practical
GM from 10 to 30 dB which matches with the result

(d <0.736 for stable OPLL operation) given in [9].
Fig. 3 illustrates this by showing the GM as a function of
& for two different values of d . Also, & should be from 0.707

to 1.0 to maintain 10 dB to 30 dB GM, both for modified first-
and second-order. Here, the GM of the second-order increases
gradually, but for the modified first-order decreases slowly as

& increases.

In Fig. 4, PM is plotted againstd of modified first- and
second-order OPLL for two different values of f . For
modified first- and second-order, d should be within 0.1-0.3
and 0.1-0.7, respectively, to achieve PM from 40° to 60°
which justifies [9].

Fig. 5 shows PM with two different loop filter configurations
versus & using two different values of d . The value of &

from 0.707 to 1.0 is sufficient to maintain 40° to 60° PM
for both with loop delay. The phase perturbation of second-

order loop is much more susceptible to d than the modified
first-order, both for lower and higher damping condition.
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Fig. 2. GM versus d for modified first- and second-order OPLL. The
symbols ‘o-’ and ‘o-- are for modified first-order loop with f =0.707,1.0,
respectively. The symbols ‘“+-> and ‘+--> are for second-order loop with

£=0.707,1.0, respectively.
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Fig. 3. GM versus f for modified first- and second-order OPLL. The
symbols ‘o-” and ‘o--" are for modified first-order loop with ¢ =0.1,0.3,

respectively. The symbols ‘*-* and ‘*--” are for second-order loop with
d =0.1,0.3 respectively.
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Fig. 4. PM versus d for modified first- and second-order OPLL. The
symbols ‘0-" and ‘o--" are for modified first-order loop with (f =0.707,1.0,

respectively. The symbols ‘“+-> and ‘+--> are for second-order loop with

£=0.707,1.0, respectively.
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Fig. 5. PM versus 5 for modified first- and second-order OPLL. The
symbols ‘o-” and ‘o--> are for modified first-order loop with ¢ =0.1,0.3,

respectively. The symbols ‘+-’ and ‘+--> are for second order loop
with, d = (.1, 0.3 respectively.
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Fig. 7. O versus @), for modified first- and second-order OPLL in

presence of loop delay. The symbols ‘--> and ‘-’ are for second- and modified
first-order loop, respectively.

Fig. 6 depicts that the minimum damping factor f is

min

required for a given PM between 0” t090”. For small PM,

fmin increases linearly with PM and consistent with & i.e.

needed for a prescribed PM as in Fig. 4. At higher PM, f

min
increases more rapidly, and & should be large for PM close

090" .
Fig. 7, calculated from (20), shows the phase-error standard

deviation 0, for a modified loop as a function of loop-natural
frequency @, . A summed laser line-width of 5 MHz, 10 dB
GM and 45° PM are used for each point. P, is set to -53.0
dBm and R =0.94 A/W. For low @

n’

O is large and is
dominated by the laser phase noise. For large @, , O is

dominated by the shot noise. The PESD reaches a minimum at
a particular value of @), for both loops. This optimum @), for

minimum O, of a second-order loop (~ 60 Mrad/s) is smaller

than that for a modified first-order loop (~ 300 Mrad/s)
indicating that second-order loops are more sensitive to loop
delay time than modified first-order loop.

IV. CONCLUSION

The loop delay deteriorates the relative stability both for
higher and lower damping conditions of first- and second-
order OPLL. Expressions of the GM and PM have been
derived for both the cases in terms of the damping coefficient
and normalized loop delay. The gain perturbations for the
second-order OPLL is much less susceptible to damping
coefficient than the modified first-order OPLL, both for low
and high values of normalized loop delay. Due to the presence
of repeated poles at the origin, the second-order OPLL is
much more susceptible to phase perturbation than the
modified first-order loop with loop propagation delay. The PM
of modified first- and second-order OPLL is controlled by the
damping co-efficient in absence of loop delay. But, the
modified first-order loop can present better performance in
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terms of PESD than the second-order loop for large loop
natural frequencies.
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