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Abstract—To overcome blind spots of an ordinary weather 
radar which scans horizontally at a high altitude, a weather 
radar which operates vertically, so called an atmospheric profiler, 
is needed. In this paper, a K-band radar for observing rainfall 
vertically is introduced, and measurement results of rainfall are 
shown and discussed. For better performance of the atmospheric 
profiler, the radar which has high resolution even with low 
transmitted power is designed. With this radar, a melting layer is 
detected and some results that show characteristics of the meting 
layer are measured well. 

Keywords—K-band; FMCW; rain radar; low transmitted 
power; high resolution; rainfall; melting layer 

I.  INTRODUCTION 
A weather radar usually measures meteorological 

conditions of over a wide area at a high altitude. Because it 
observes weather phenomena in the area, it is mainly used for 
weather forecasting. However, blind spots exist because an 
ordinary weather radar scans horizontally, which results in 
difficulties in obtaining information on rainfall at higher and 
lower altitudes than the specific altitude. Therefore, a weather 
radar that covers the blind spots is required. 

A weather radar that scans vertically could solve the 
problem. This kind of weather radar, so called an atmospheric 
profiler, points towards the sky and observes meteorological 
conditions according to the height [1]. Also, because the 
atmospheric profiler usually operates continuously at a fixed 
position, it could catch the sudden change of weather in the 
specific area. 

In this paper, K-band rain radar which has low transmitted 
power and high resolutions of the range and the velocity is 
introduced. The frequency modulated continuous wave 
(FMCW) technique is used to achieve high sensitivity and 
reduce the cost of the system. In addition, meteorological 
results are discussed. Reflectivity, a fall speed of raindrops 
and Doppler spectrum measured when it rained are described, 
and characteristics of the melting layer are analyzed as well. 

II. DEVELOPMENT  OF K-BAND RAIN RADAR SYSTEM 

A. Antenna 
To suppress side-lobe levels and increase an antenna gain, 

offset dual reflector antennas are used [2]. Also, separation 

wall exists between the transmitter (Tx) and receiver (Rx) 
antennas to improve isolation between them. With these 
methods, leakage power between Tx and Rx could be reduced. 
Fig. 1 shows manufactured antennas and the separation wall.  

B. Design of Tranceiver 
Fig. 2 shows a block diagram of the K-band rain radar. 

Reference signals for all PLLs in the system and clock signals 
for every digital chip in baseband are generated by four 
frequency synthesizers. In the Tx baseband module, a field 
programmable gate array (FPGA) controls a direct digital 
synthesizer (DDS) to generate an FMCW signal which 
decreases with time (down-chirp) and has a center frequency 
of 670 MHz. The sweep bandwidth is 50 MHz which gives the 
high range resolution of 3 m. Considering the cost, 2.4 GHz 
signal used as a reference clock input of the DDS is split and 
used for a local oscillator (LO). the FMCW signal is 
transmitted toward raindrops with the power of only 100 mW. 
Beat frequency which has data of the range and the radial 
velocity of raindrops is carried by 60 MHz and applied to the 
input of the Rx baseband module. In the Rx baseband module, 
quadrature demodulation is performed by a digital down 
converter (DDC). Thus, detectable range can be doubled than 
usual. Two Dimensional-Fast Fourier Transform (2D-FFT) is 
performed by two FPGAs. Because the 2D FFT is performed 
with 1024 beat signals, the radar can have high resolution of 
the radial velocity.  Finally, data of raindrops are transferred to 
a PC with local LAN via the an UDP protocol. TABLE I. 
shows main specification of the system. 

 Fig. 1. Manufactured antenna and separation wall. 
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Abstract— The effect of loop delay on the relative stability of 
first- and second-order optical phase-lock loop (OPLL) is 
analyzed. The gain margin and phase margin for OPLL with 
modified first-order loop filter and active low-pass loop filter are 
demonstrated considering all the parameters affecting the loop 
stability. The tracking performance of OPLL in terms of  phase-
error variance is highlighted considering shot noise, white 
frequency induced phase noise and loop propagation delay in 
stable operating condition, too. 
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I. INTRODUCTION 

OPLL has innumerable applications in laser frequency 
stabilization, coherent optical communication systems, and 
low noise microwave or mm-wave generation. In last decade, 
lot of research has been carried out on OPLL [1]-[6]. OPLL 
has finite time-delay. The loop-delay affects the phase 
response of the loop output imposing a restriction on the 
higher value of the loop natural frequency due to the stability 
condition [6] and the phase-error variance even at the 
optimum condition rises sharply with delay. Lowering of the 
loop natural frequency decreases the pull-in range, increases 
the pull-in time, tracking error and phase-error variance etc. 
OPLL should be operated well within the stability region. So 
phase margin (PM) and gain margin (GM) are the measures of 
degree of loop stability. The influence of loop-delay on the 
PM of first- and second-order loops for both the discrete and 
continuous time variety has already be shown by Bergman [7]. 
For a modified PSK homodyne optical receiver stability 
analysis, the impacts of damping factor and loop-gain on the 
PM has been discussed in [8]. In [9], the maximum limit of 
loop propagation delay for stable operation of second-order 
OPLL was reported. 

II. THEORY 

 
Fig. 1. Block schematic of the OPLL. 
 
Fig.1 shows an OPLL where the local oscillator (LO) laser 
phase forms the output signal. The open-loop 

transmission, ( )G s  is given by the phase-detector gain 

( PDK ), loop filter transfer function ( ( )F s ) and LO laser 

tuning efficiency ( VCOK ). A first-order loop-gain function 

contains one integration within the frequency tuning of the LO 
laser whereas second-order contains another. So, the open-
loop transfer function of the loop is given by 

( ) ( ) ( )exp
KG s F s s
s

τ= −                                      (1) 

where ( )s jω=  is the Laplace-variable, τ  is the loop delay 

(sec), and ( )P D V C OK K K=  is the loop-gain in Hz. The 

transfer function is given by

 ( ) ( )
( )

( )
( )1

o

i n

s G s
H s

s G s
φ
φ

= =
+

.                         (2) 

 

A. Phase Margin and Gain Margin 

The gain margin (GM ) is the gain perturbation that makes the 
system marginally stable and is measured at the phase 

crossover frequency pω ω=  for which ( )G jω π∠ = − , 

where, pω is the phase-crossover frequency [10].   

1537



       
( )10

1
20 log

p

GM
G jω

=  .              (3)           

The phase margin ( PM ) is the negative phase perturbation 
that makes the system marginally stable and is determined at 

the unity-gain frequency of ( )ωjG  [10], i.e., at gω ω=  for 

which ( ) 1G jω = , where gω  is the gain-crossover 

frequency. If the phase ( )ωφ of ( )G jω  exceeds π−  rad 

at gω ω= , the system will be unstable By definition,  

( )gP M π φ ω= + .                         (4) 

We first consider the first-order OPLL, i.e., ( ) 1.F s = We 

may write    ( ) ( )ex p
KG j j
j

ω ω τ
ω

= −        (5.1) 

with ( )
2

G j πω ωτ∠ = − − and ( ) KG jω
ω

= .                   (5.2) 

From (5.2), we get, 
2p
πω
τ

= , and g Kω = .                 (6) 

Using (3), (4) and (6), we get, 

1020log
2

GM
K
π

τ
 =  
 

and
2

PM Kπ τ = − 
 

 .                     (7) 

Expression (7) shows that both GM and PM decreases as 

normalized loop delay ( )d Kτ=  increases. The edges of the 

stability region are determined by setting 0GM = dB and 

0PM = °. So at the edge of stability, 2d π= . In practical 

systems PM of around 4.5π  to 3π  rad are required for 

which d  will be5 18π  to 6π , respectively; and GM of 10 

and 30 dB are obtained for 0.497d = and 0.049d = , 
respectively. 
We next consider the modified first-order loop filter with 

transfer function [6], ( ) ( )
1

1
F s

sT
=

+
                         (8) 

where T  is the filter time constant. Substituting (8) into (1) 
we may write   

( ) ( )1
exp

1

KG j j
j j T

ω ωτ
ω ω
 

= − + 
.                         (9) 

To calculate the PM, we first calculate ( ) 2
G jω  and equate 

that to 1. After few steps of mathematical simplifications, we 
get  

( )1g n Fω ω ξ=
 
where ( )

1
22 4

1 2 4 1F ξ ξ ξ = − + + 
      (10)         

where ( )n
K

Tω = , 
2

n
K

ωξ  = 
 

 are the loop-natural 

frequency and damping coefficient of the OPLL with the 
modified first-order loop filter, respectively. 

Finally, the PM can be expressed    

( ) ( ) ( )11
1tan

2 2g

F
PM dF

ξππ φ ω ξ
ξ

−  
= + = − − 

                        

(11) 

where ( )nd ω τ=  is the normalized loop propagation delay. 

To calculate the GM of the loop, we first calculate ( )G jω∠  

and equate that to π− . After simplifications and 
approximating the tangent term up to third order, one obtains, 

                        ( )2 ,p n F dω ω ξ=
 

where ( )
1

2

2 2

3 2 4 9
,

2

dF d
d

ξξ
 − + +

=  
  

            (12) 

and       4 2
10 2 220 log 16GM F Fξ = + 

.        (13) 

Considering an active low-pass loop filter with transfer 
function [1] ( ) 2

1

1 sF s
s

τ
τ

+=  (where 
1τ  and 

2τ  are the filter 

time-constants), and using the same procedure stated  earlier, 
for second-order OPLL with  loop  propagation  delay  we  get   

      ( )3g n Fω ω ξ= ,                 

where      ( )
1

22 4
3 2 4 1F ξ ξ ξ = + +       

          (14) 

and        ( )( ) ( )1
3 3tan 2P M F dFξ ξ ξ−= −            (15) 

where 
1

n
Kω τ

 = 
 

, 2
2

nω τξ  = 
   

and ( )4 ,p n F dω ω ξ=
 

where      ( ) ( )
1

2

4 3

3 2
,

d
F d

d
ξ

ξ
− 

=  
 

         (16) 

and          2
4

1 0 2 2
4

2 0 lo g
4 1

FG M
Fξ

 
 =
 + 

.        (17) 

The minimum damping factor minξ  that is required to achieve 

a prescribed PM of OPLL with modified first-order loop filter 
and active low-pass loop filter can be obtained from (11) and 
(14), are given respectively, by,

 
1

4

m in 2 2

1

16 cot ( )(cot ( ) 1)P M PM
ξ  

=  + 
(18) 

and

 

1
4 4

m in 2

tan ( )

1 6 (tan ( ) 1)

P M
P M

ξ  
=  + 

.        (19) 

B. Phase-error Variance 

The OPLL performance depends on its ability to track the 
phase of the incoming signal. Any error in tracking degrades 
the performance, is represented by the phase-error variance. 
The phase-error variance of the dither OPLL with loop 
propagation delay is given by [6] 

( ) ( )
2

22

0 0

1

2
n

E
n R

H x qdx H x dx
x RP

ωνσ
πω

∞ ∞−Δ= + 
     

(20) 
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where υΔ is the summed laser line-width in Hz, RP  denote 

the power of received signal in W, q  is the electron charge in 

Coulomb and R is the photo-detector responsivity in A/W. 

( )H x  can be obtained from (1) and (2), and nx ω ω= . The 

quantities on the right hand side of (20), respectively, denote 
the variances due to white frequency noise induced laser phase 
noise and shot noise.  
 

III. RESULTS AND DISCUSSION 
 

Fig. 2 shows GM gradually decreases as normalized loop 
propagation delay d increases, the OPLL becomes more 
susceptible to gain perturbations, both for damping coefficient 

0.707ξ = and 1.0ξ = . For low values of d , the second-

order OPLL is slightly less susceptible to gain perturbations 
than the modified first-order and for higher values of d , the 

situation is reversed. For modified first- and second-order, d  
should apparently be of the order of 0.1 to 0.7 for practical 
GM from 10 to 30 dB which matches with the result 
( 0.736d <  for stable OPLL operation) given in [9].  
Fig. 3 illustrates this by showing the GM as a function of 
ξ for two different values of d . Also, ξ should be from 0.707 

to 1.0 to maintain 10 dB to 30 dB GM, both for modified first- 
and second-order. Here, the GM of the second-order increases 
gradually, but for the modified first-order decreases slowly as 
ξ increases. 

In Fig. 4, PM  is plotted against d  of modified first- and 
second-order OPLL for two different values of ξ . For 

modified first- and second-order, d  should be within 0.1-0.3 

and 0.1-0.7, respectively, to achieve PM  from 040  to 060  
which justifies [9].  
Fig. 5 shows PM with two different loop filter configurations 
versus ξ  using two different values of d . The value of ξ  

from 0.707 to 1.0 is sufficient to maintain 040  to 060  PM 
for both with loop delay. The phase perturbation of second-
order loop is much more susceptible to d than the modified 
first-order, both for lower and higher damping condition.  
 

 
Fig. 2. GM  versus d  for modified first- and second-order OPLL. The 
symbols ‘o-’ and ‘o--’ are for modified first-order loop with  0.707,1.0ξ = , 

respectively. The symbols ‘+-’ and ‘+--’ are for second-order loop with 
0.707,1.0ξ = , respectively. 

 
Fig. 3. GM  versus ξ  for modified first- and second-order OPLL. The 

symbols ‘o-’ and ‘o--’ are for modified first-order loop with 0.1,0.3d = , 

respectively. The symbols ‘*-’ and ‘*--’ are for second-order loop with 
0.1,0.3d = respectively. 

 
Fig. 4. PM  versus d  for modified first- and second-order OPLL. The 
symbols ‘o-’ and ‘o--’ are for modified first-order loop with 0.707,1.0ξ = , 

respectively. The symbols ‘+-’ and ‘+--’ are for second-order loop with 
0.707,1.0ξ = , respectively. 

 
 Fig. 5. PM  versus ξ  for modified first- and second-order OPLL. The 

symbols ‘o-’ and ‘o--’ are for modified first-order loop with 0.1,0.3d = , 

respectively. The symbols ‘+-’ and ‘+--’ are for second order loop 
with, 0.1,0.3d = respectively. 

 
   Fig. 6. minξ  versus  PM . 
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Fig. 7. Eσ

 
versus nω  for modified first- and second-order OPLL in 

presence of loop delay. The symbols ‘--’ and ‘-’ are for second- and modified 
first-order loop, respectively.  

 

Fig. 6 depicts that the minimum damping factor minξ  is 

required for a given PM between 00  to 090 . For small PM, 

minξ  increases linearly with PM and consistent with ξ  i.e. 

needed for a prescribed PM as in Fig. 4. At higher PM, minξ  

increases more rapidly, and ξ  should be large for PM  close 

to 090 . 
Fig. 7, calculated from (20), shows the phase-error standard 

deviation Eσ  for a modified loop as a function of loop-natural 

frequency nω . A summed laser line-width of 5 MHz, 10 dB 

GM and 045  PM are used for each point. RP  is set to -53.0 

dBm and 0.94R = A/W. For low nω , Eσ  is large and is 

dominated by the laser phase noise. For large nω , Eσ  is 

dominated by the shot noise. The PESD reaches a minimum at 

a particular value of nω for both loops. This optimum nω  for 

minimum Eσ  of a second-order loop (~ 60 Mrad/s) is smaller 

than that for a modified first-order loop (~ 300 Mrad/s) 
indicating that second-order loops are more sensitive to loop 
delay time than modified first-order loop.  
 

IV. CONCLUSION 
 

The loop delay deteriorates the relative stability both for 
higher and lower damping conditions of first- and second-
order OPLL. Expressions of the GM and PM have been 
derived for both the cases in terms of the damping coefficient 
and normalized loop delay. The gain perturbations for the 
second-order OPLL is much less susceptible to damping 
coefficient than the modified first-order OPLL, both for low 
and high values of normalized loop delay. Due to the presence 
of repeated poles at the origin, the second-order OPLL is 
much more susceptible to phase perturbation than the 
modified first-order loop with loop propagation delay. The PM 
of modified first- and second-order OPLL is controlled by the 
damping co-efficient in absence of loop delay. But, the 
modified first-order loop can present better performance in 

terms of PESD than the second-order loop for large loop 
natural frequencies.  
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