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Abstract—This paper aims to investigate the be-
haviour of linear inverse method, linear sampling
method (LSM), to estimate geometric properties of
dielectric/ conducting objects. LSM is a simple, reliable
linear inverse algorithm and uses multiview multistatic
scattered field data measured around target objects.
Despite its simplicity and computational effectiveness,
LSM fails to detect targets support at certain frequencies
(eigenvalues). The present work focusses on the occur-
rence of eigenvalues with respect to the object geometric
properties. All these analyses are done by considering
the numerical examples of synthetic data as well as
experimental data provided by Institute of Fresnel.

Keywords—Conductors, detection, dielectrics, linear
sampling method.

I. INTRODUCTION

Non-destruction evaluation of unknown objects
has many applications in the field of military, civil,
industrial, and so on. [1]. LSM is a simple, reliable
and effective tool to estimate the shapes and locations
of the dielectric and/or metallic objects through multi-
view-multi-static measured scattered fields [2] . The
method has a wide range of applications in 2-D and 3-
D configurations in the presence of isotropic as well as
anisotropic scatterers [3], [4]. In addition, the method
has very low computational time. This method has
been extensively studied from mathematical point of
view, still issues such as limitations of LSM and how
to use it in practice, have not been well addressed.
In our recent work [5], we have shown that the LSM
fails to detect the target points at certain frequencies
due to the occurrence of eigenvalues. The analysis
is carried out by considering the circular geometry
and the results are concluded. In extension to the
works reported in [5], the present work aims to
find out weather the LSM possess similar behaviour
for non-circular objects, if yes, what could be the
effect on eigenvalues. The analysis are carried out
by considering the numerical examples of synthetic
data as well as experimental data. The rest of the
paper is organized as follows. A Brief note about LSM
and numerical results are discussed in Section II, The
results are concluded in Section III.

II. LINEAR SAMPLING METHOD

Let us consider the objects under investigation are
illuminated by an incident field from a direction ϕi
and the resulted scattered fields be measured at a
far-field distance r. According to LSM, the targets
support is estimated through the solution of far-field
equation [2],

F [ξ] =

2π∫
0

Escat(r, ϕi)ξ(zt, ϕi)dϕi = G(r, zt) (1)

where G is a point source, zt = (x, y) is a sampling
point that spans the considered investigation area, and
ξ is an unknown complex function that weights the
scattered fields due to scattering objects in such a way
that the resultant field look like the field radiated from
the point source located at zt. F is a compact far-field
operator [2]. F : L2(Γ)→ L2(Γ).

To estimate the target’ support, Eq. 1 is to be
solved for each zt. According to the principle of LSM,
the solution in the energy form ‖ξ(zt)‖

2 is bounded
if zt belongs to the scatterer support and unbounded
elsewhere. Here, ‖·‖ is the standard L2-norm. Hence,
Eq. 1 is ill-posed [6] and requires regularization for
a stable solution. While referring to [2] for mathe-
matical details, the final form of regularized solution
based on the Singular Value Decomposition (SVD)
technique [1] can be written as

‖ξ(zt)‖
2

=

N∑
n=1

(
λn

λ2n + α

)2

|f · µn|2 (2)

where λn and µn are singular-values and left-
singular-vector of F , respectively. ξ is the vector of
unknowns, vector f is the far-field pattern radiated by
the point source located at zt, N is the total number
of non-zero singular values, and α is a regularization
parameter. Therefore, the support of the scatterer is
found by plotting ‖ξ(zt)‖

2 over the investigating
domain. Parameter α is estimated using physics-based
criteria as reported in [7], which does not require
knowledge about noise level present in the measured
data.



Fig. 1. The behavior of LSM for PEC: (a) LSM indicator function
Magnitudes of multipoles at the sampling point zt0 ; (b) Results of
LSM for PEC: (i) Reference profile; (ii) Expected LSM results for
β = 0.5; (iii) β = 0.38; (iv) β = 0.61; (iv) β = 0.88.

A. LSM on Circular PEC Objects

If the scattered fields of a circular PEC cylin-
der of radius a are represented with multipoles, the
monopole terms of Eq. 1 are given by [5]

2π∫
0

ξ(zt, ϕi)dϕi =

(
1

4j

)(
H

(2)
0 (2πβ)

J0(2πβ)

)
(3)

Here, β = a
λb

. λb is the background wavelength. The
solution ‖ξ(zt)‖

2 depends on the right side of equa-

tion. The right-hand side of Eq. 3 (i.e.,
∣∣∣∣H(2)

0 (2πβ)
J0(2πβ)

∣∣∣∣) is

the inverse magnitude of monopole term having the
oscillatory behaviour in the range of [1,∞) with re-
spect to β. Hence, finite values of ξ exists only for the

finite values of
∣∣∣∣H(2)

0 (2πβ)
J0(2πβ)

∣∣∣∣ (i.e., ξ is unbounded for

zero-valued monopole terms). The values of ‖ξ‖2are
plotted in Fig. 1(a) using Eq. 1 for sample points
zt0 = (0, 0), zt1 = (0, 1) and zt2 = (2,−1). It
can be observed that the solution become divergent
for certain values of β (eigenvalues) even-though the
sample points are belong to the scatterer [8]. This
behaviour is due to divergence nature of Eq. 3. More
theoretical explanations can be found in [5]. The LSM
reconstruction results of a PEC cylinder are shown
in Fig. 1(b) for various β values. Fig. 1(b)(ii) shows
the expected result obtained at β = 0.5. Fig. 1(b)(iii)
through Fig. 1(b)(v) show the LSM results for β
values 0.38, 0.61, and 0.88 where the eigenvalues
occur.

Fig. 2. The behavior of LSM for εr = 2: (a) LLSM indicator
function at the sampling points zt0 , zt1 and zt2 . (b) Results of
LSM: (i) Reference profile; (ii) Expected LSM results for β = 0.5;
(iii) β = 1.17; (iv) β = 1.27.

B. LSM on Circular dielectric Objects

The LSM response for circular dielectric objects
is similar to the case of PEC. Fig. 2(a) shows the
indicator function for the dielectric cylinder of radius
a and relative permittivity εr = 2. It can be seen
that less eigenvalues are found compared to the case
of PEC. Number of these values gets increase for
the higher values of εr [5]. The LSM reconstruction
results are shown in Fig. 2(b). The expected result is
seen in 2b(ii) at β = 0.5. Fig. 2b(iii) and (iv) show
the effect of eigenvalues that occurs at β = 1.17 and
β = 1.27.

C. LSM on Non-Circular Objects

In the previous section, the behaviour of LSM
is analysed based on the nature of multipoles at the
centre of circular objects. But in practical application
the investigating objects are of any shape. Therefore,
it is also required to investigate the performance of
LSM for a non-circular objects so that the drawn
conclusions remain valid in such cases. In this study,
we consider a square object of length 3

√
2 so that it

can be enclosed in a circle of radius 3 (the dimension
that is considered in the previous section). Here also,
the values of β range from 0.02 to 2. Since it is not
possible to get a closed expression for multipoles of
non-circular object, we study the behaviour of the
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Fig. 3. The behavior of LSM for PEC square.

Fig. 4. LSM results for PEC square: (a) β = 0.3. (b) β = 0.49.
(c) β = 1.11. (d) β = 0.78.

indicator functions only. The LSM outputs at the
sampling points zt0 , zt1 , and zt2 are shown in Fig.
3. By comparing the nature of plots with Fig. 1(a),
it can be observed that the behavior of the indicator
at zt0 is similar to the case of circular object except
the occurrence of eigenvalues is at larger values of β.
For example in Fig. 1(a), first and second eigenvalues
are located at 0.38 and 0.88, respectively whereas in
the present case, these values are shifted to 0.49 and
1.11, respectively. This behaviour is not a surprise
since the overall area of the square object (18 cm2)
is less compared to the area of circle (28.27 cm2)
resulting in the equivalent radius of square is 2.39.
The number of multipoles to represent the scattered
field increases with β (either by increase in the size or
by increase in the frequency) so does the occurrence
of eigenvalues. In the present case, the size of the
scatterer is reduced so that these eigenvalues occur
at higher values of β. A similar nature can also be
seen at zt1 and zt2 . Fig. 4 shows the results of LSM
for various β = 0.3 values. It can be seen that the
shape of the scatterer is estimated properly at β = 0.3
whereas the central portion is undetected at β = 0.49
and β = 1.11. These results are exactly similar to
the case of circular object of Fig. 1. Unlike circular
objects, the monopole terms at zt0 depend on ϕi.
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Fig. 5. The behavior of LSM for dielectric square.

Fig. 6. LSM results for dielectric square: (a) β = 0.3, (b) β =
0.66, (c) β = 1.16, (d) β = 0.57.

Hence, one cannot say that all the monopole terms go
to zero at β = 0.49. Therefore, we can only say that
the effective monopole term goes to zero. Similarly,
at β = 0.78, the central portion of the scatterer is
detected whereas the neighbor points are undetected.
It is due to the effect of higher order multipole terms
[5]. For the case of dielectrics, similar results are
obtained. Fig. 5 shows the indicator functions at the
sampling points zt0 , zt1 , and zt2 for the case of
εr = 4. The results of LSM are shown in Fig. 6.

From the above discussion, it can be concluded that

• The occurrence of eigenvalues happens irre-
spective of the shape of the scatterer.

• The location of these eigenvalues is the func-
tion of both shape and size of the scatterer.

D. LSM on Experimental data

Here, the experimental data of two types of refer-
ence profiles are considered [9]. First, two dielectric
objects of radius 1.5 cm having relative permittivity
εr = 3. Second, U-shaped metalic object having
arm length of 8 cm and width of 0.5 cm. These
objects are shown in Fig. 7 and were sequentially
illuminated at 0◦, 10◦,...,350◦ with 10◦ incremental
angular step. In each illumination, the scattered fields
are measured from 60◦ to 300◦ angular span with
5◦ angular step with reference to the transmitter. The
LSM reconstruction results of dielectric objects at 4
GHz and at 8 GHz are shown in Fig. 7(a). It can



Fig. 7. LSM experimental results: (a) Two dielectric objects; (i)
Reference profile, (ii) at 4 GHz, (iii) at 8 GHz. (b) U-shaped metalic
object; (i) Reference profile, (ii) at 4 GHz, (iii) at 12 GHz.

be seen that smooth profile is estimated at 4 GHz
whereas the central portions is partially detected at 8
GHz. It is due to the affect of eigenvalues. Similary,
for PEC objects, the estimated resulst are good at 4
GHz whereas at 12 GHz, the shape is affected by the
occurence of eigen values.

III. CONCLUSION

The behaviour of LSM for the geometric estima-
tion of both PEC and dielectrics has been studied by
representing the scattered fields with multipoles. It has
been found that the LSM fails to estimates the target
support for certain frequencies (eigenvalues). These
values occur irrespective of the type of targets as well
as the shape of targets. It has been bound that the
location of these values depend on target properties.

REFERENCES

[1] M. Pastorino, Microwave imaging. New Jersey, USA: Wiley,
2010.

[2] D. Colton, H. Haddar, and M. Piana, “The linear sampling
method in inverse electromagnetic scattering theory,” Inv.
Prob., vol. 19, no. 6, pp. S105–S137, 2003.

[3] D. Colton and P. Monk, “A linear sampling method for the
detection of leukemia using microwaves,” SIAM J. Appl.
Math., 58, pp. 926–941, 1998.

[4] D. Colton and M. Piana, “The simple method for solving
the electromagnetic inverse scattering problem: the case of
TE polarized waves”, Inv. Prob., vol. 14, no. 3, pp. 597–614,
1998.

[5] E. Mallikarjun and A. Bhattacharya, “Shape reconstruction
of mixed boundary objects by linear sampling method,” IEEE
Trans. Antennas Propagat., vol. 63, no. 7, pp. 3077–3086,
2015.

[6] M.Bertero and P. Boccacci, Introduction to Inverse Problems
in Imaging. UK: IOP Publishing Ltd, 1998

[7] I. Catapano and L. Crocco, “An Imaging Method for Con-
cealed Targets,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 5, pp. 1301–1309, 2009.

[8] J. Sun,“An eigenvalue method using multiple frequency data
for inverse scattering problems,” Inv. Prob., vol. 28, no. 8,
025012, 2012.

[9] K. Belkebir and M. Saillard,“Special section: Testing inver-
sion algorithms against experimental data”, Inv. Prob., vol.
17, pp. 1565–1571, 2001.


