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Abstract

The paper treats a problem of propagation of coupled elec-

tromagnetic TE-TE waves in a nonlinear plane waveguide

located between two half-spaces with constant permittivi-

ties. Nonlinearity in the waveguide is described by a sat-

urated nonlinearity. The physical problem is reduced to

a nonlinear two-parameter eigenvalue problem for a sys-

tem of (nonlinear) ordinary differential equations. Unique-

ness of solution to the two-parameter eigenvalue problem is

proved. Numerical results are presented.

1 Introduction

For many years electromagnetic polarized wave propaga-

tion in nonlinear dielectric waveguides is intensively inves-

tigated [1, 2, 3, 4, 5, 6, 7, 8]. The further step was to study

the processes of coupled electromagnetic waves propaga-

tion in nonlinear waveguide structures [9, 10, 11].

In this paper coupled electromagnetic TE-TE wave propa-

gation problem is investigated. The wave propagates in a

nonlinear dielectric waveguide placed between two linear

half-spaces. The nonlinearity in the waveguide is described

by a monotonically increasing bounded function. The prob-

lem is reduced to the multiparameter eigenvalue one w.r.t.

two propagation constants. Uniqueness conditions to the

two-parameter eigenvalue problem are found.

In addition, we have carried out two numerical experiments

for widely used type of nonlinearity with saturation. In each

experiment we compared the nonlinear and linear cases.

A numerical method for the determination of the coupled

propagation constants was presented in [12].

2 Statement of the problem

Let us consider the propagation of an electromagnetic TE-

TE wave Ẽ, H̃, where

Ẽ = E1e−iω1t +E2e−iω2t
, H̃ = H1e−iω1t +H2e−iω2t

,

ω1, ω2 are the circular frequencies. Complex amplitudes E,

H have the form E = E1 +E2, H = H1 +H2, where

E1 = (0,E1y,0)
⊤
, H1 = (H1x,0,H1z)

⊤
,

E2 = (0,0,E2z)
⊤
, H2 = (H2x,H2y,0)

⊤
,

( · )⊤ is the transposition operation, the field components

E1y, H1x, H1z do not depend on y and the field components

E2z, H2x, H2y do not depend on z.

Waves propagate through a nonlinear homogeneous

isotropic nonmagnetic dielectric waveguide Σ, where

Σ :=
{

(x,y,z) : 0 < x < h,(y,z) ∈ R
2
}

,

h > 0 is a thickness of the waveguide. The permittivity in

the entire space has the form ε = ε0ε̃ , where

ε̃ =











ε1, x > h

ε2 +α f
(

|E|2
)

, 0 6 x 6 h,

ε3, x < 0,

ε0 > 0 is the permittivity of free space, ε1,ε2,ε3,α,β > 0

are real constants, f is a monotonically increasing bounded

function, f (0) = 0, auxiliary condition on the function

f will be described in section 3. We assume that ε2 >

max{ε1,ε3} and min{ε1,ε3}> ε0.

Maxwell’s equations have the form



















rot(H1e−iω1t +H2e−iω2t) =−iω1εE1e−iω1t−
−iω2εE2e−iω2t

,

rot(E1e−iω1t +E2e−iω2t) = iω1µ0H1e−iω1t+

+iω2µ0H2e−iω2t
.

(1)

Thus the complex amplitudes E,H satisfy equations (1) and

the radiation condition at infinity, where electromagnetic

field exponentially decays as |x| → ∞ in the half-spaces

x> h and x < 0; in addition, E,H satisfy the continuity con-

dition for the tangential field components at the boundaries

x = h and x = 0.

The components E1y, H1x, H1z, E2z, H2x, H2y have the form

E1y = E1y(x)e
iγ1z

, H1x = H1x(x)e
iγ1z

, H1z = H1z(x)e
iγ1z

,

E2z = E2z(x)e
iγ2y

, H2x = H2x(x)e
iγ2y

, H2y = H2y(x)e
iγ2y

,

where γ1, γ2 are unknown real constants, E1y,H1x,H1z,

E2z,H2x,H2y are unknown functions.

Substituting E,H with the above defined components into

Maxwell’s equations (1), we obtain
{

E′′
1y − γ2

1 E1y =−k2
1ε̃E1y,

E′′
2z − γ2

2 E2z =−k2
2ε̃E2z,

(2)



where k2
j = ω2

j µ0ε0 and everywhere integer index j = 1,2.

The components of the magnetic fields have the form

H1x =− γ1

ω1µ0

E1y, H1z =− i

ω1µ0

E′
1y,

H2x =
γ2

ω2µ0

E2z, H2y =
i

ω2µ0

E′
2z.

System (2) is linear in the half-spaces x > h and x < 0, re-

spectively. Using the radiation condition at infinity, we get

its solutions
{

E1y = A1e−κ11(x−h),

E2z = A2e−κ21(x−h),
x > h, (3)

{

E1y = B1eκ13x,

E2z = B2eκ23x,
x < 0, (4)

where κ j1 =
√

γ2
j − k2

jε1 > 0, κ j3 =
√

γ2
j − k2

j ε3 > 0, A j,

B j are constants of integration. It should be noted that the

constants A j are supposed to be known (initial conditions).

Let us formulate the problem for real functions u1 := E1y,

u2 := E2z. Thus we get |E|2 = |u|2 = u2
1 + u2

2. Inside the

waveguide Σ from (2) we obtain the nonlinear system

{

u′′1 +κ2
1 u1 =−k2

1α f (|u|2)u1,

u′′2 +κ2
2 u2 =−k2

2α f (|u|2)u2,
(5)

where κ j =
√

k2
j ε2 − γ2

j , u = (u1,u2)
⊤.

Tangential components of electromagnetic field are known

to be continuous at the (open) interface. In this case the

tangential components are E1y, E2z, H1z, H2y and the trans-

mission conditions for the functions u1 and u2 take the form

[u j]
∣

∣

x=0
= 0, [u′j]

∣

∣

x=0
= 0,

[u j]
∣

∣

x=h
= 0, [u′j]

∣

∣

x=h
= 0,

(6)

where [w]|x=x0
= limx→x0−0 w(x)− limx→x0+0 w(x). Using

(3), (4), and transmission conditions (6), we obtain bound-

ary values of the fields

u j(0) = B j, u′j(0) = κ j3B j, (7)

u j(h) = A j, u′j(h) =−κ j1A j. (8)

Definition 1 Problem P is to find real pair (γ1,γ2) such that

for given values of A1, A2 there are nontrivial functions u1,

u2 such that for 0 6 x 6 h functions u1, u2 are solutions of

system (5) and satisfy boundary conditions (7),(8).

3 Nonlinear integral equations

We are going to invert linear parts of the equations in (5).

Let L ju =−k2
j α f (|u|2)u j, where L j =

d2

dx2 +κ2
j . Construct

Green functions for the following boundary value prob-

lems:
{

L1G1 =−δ (x− s),

G′
1|x=0

= G′
1|x=h

= 0,

{

L2G2 =−δ (x− s),

G′
2|x=0

= G′
2|x=h

= 0.

It can be proved that the Green functions have the forms

G j(x,s) =−cos(κ j min(x,s))cos(κ j(max(x,s)− h))

κ j sin(κ1h)
.

Using the second Green formula, conditions (7), (8) and

(3), we obtain



















u1(s) = k2
1α

∫ h
0 G1(x,s) f (|u|2)u1dx−

−κ11A1G1(h,s)−κ13B1G1(0,s),

u2(s) = k2
2α

∫ h
0 G2(x,s) f (|u|2)u2dx−

−κ21A2G2(h,s)−κ23B2G2(0,s).

(9)

Setting s = h in (9), we get

A j = k2
j α

∫ h

0
G j(x,h) f (|u|2)u jdx+

+κ j1A j

cos(κ jh)

κ j sin(κ jh)
+κ j3B j

1

κ j sin(κ jh)
. (10)

Setting s = 0 in (9), we obtain

B j = k2
j α

∫ h

0
G j(x,0) f (|u|2)u jdx+

+κ j1A j
1

κ j sin(κ jh)
+κ j3B j

cos(κ jh)

κ j sin(κ jh)
. (11)

Using expressions (11), system (9) can be rewritten in the

following form:















































u1(s) = k2
1α

∫ h
0 G1(x,s) f (|u|2)u1dx+

+
k2

1ακ13 cos(κ1(s−h))
κ1 sin(κ1h)−κ13 cos(κ1h)

∫ h
0 G1(x,0) f (|u|2)u1dx+

+
(

cos(κ1s)+ κ13 cos(κ1(s−h))
κ1 sin(κ1h)−κ13 cos(κ1h)

)

A1κ11
κ1 sin(κ1h) ,

u2(s) = k2
2α

∫ h
0 G2(x,s) f (|u|2)u2dx+

+
k2

2ακ23 cos(κ2(s−h))

κ2 sin(κ2h)−κ23 cos(κ2h)

∫ h
0 G2(x,0) f (|u|2)u2dx+

+
(

cos(κ2s)+ κ23 cos(κ2(s−h))
κ2 sin(κ2h)−κ23 cos(κ2h)

)

A2κ21

κ2 sin(κ2h)
.

(12)

It is necessary for further actions to rewrite system (12) in

an operator form.

Let K1(x,s) and K2(x,s) be the kernel matrices

K j(x,s) =
{

K
( j)
nm (x,s)

}2

n,m=1
,

where K
(1)
j j (x,s) = k2

j G j(x,s), K
( j)
12 (x,s) = K

( j)
21 (x,s) = 0,

K
(2)
j j (x,s) = k2

j p j cos(κ j(s− h))G j(x,0),

p j =
κ j3

κ j sin(κ jh)−κ j3 cos(κ jh)
.



Introduce the matrix integral operators

K jq =

∫ h

0
K j(x,s)q(x)dx,

where q = (q1,q2)
⊤. Let also h = (h1,h2)

⊤, where

h j = A j

κ j1

(

cos(κ js)+ p j cos(κ j(s− h))
)

κ j sin(κ jh)
.

Now if we introduce two linear operators N :=α(K1+K2),
N1 := K1 +K2, from system (12) we get

u = αN1

(

|u|2
)

+h. (13)

We study equation (13) in C[0,h] =C[0,h]×C[0,h].

Now we introduce the following notations F(u) =
f
(

|u|2
)

u, ( · )′c is Gateaux derivative.

The following statement is valid.

Statement 1 Let F ′
c(v) be bounded. Then there exist pos-

itive constants α , C such that αC‖N1‖ < 1 and equation

(13) has a unique solution u = u∗ ∈ C[0,h].

Let v j = (v j1,v j2)
⊤ and C = sup

u∈C[0,h]

‖F ′
c(u)‖ . The follow-

ing estimation
∥

∥N( f
(

|v1|2
)

v1)−N( f
(

|v2|2
)

v2)
∥

∥6 αC‖N1‖‖v1 − v2‖

is valid.

Clearly, for q = αC‖N1‖ < 1 the operator N1 is a con-

traction mapping. We choose r > 0 in such a way that

the condition ‖h‖ 6 (1 − q)r is fulfilled. According to

lemma 2 [13, p. 382] the operator N1 maps the ball

Br(0) = Br(0)×Br(0) into the same ball in C[0,h], where

Br(0)= {x ∈ R : ‖x‖< r}. Then equation (13) has a unique

solution u = u∗ ∈ Br(0) ⊂ C[0,h]. Since r can be chosen

arbitrarily large, then the statement 1 is valid.

4 Dispersion equations

Combining (10), (11) and using the values of the Green

functions G1, G2 at s = 0,h, we obtain the system of dis-

persion equations

{

A1g1(γ1) = k2
1α

Q1(γ1,γ2)
sin(κ1h) ,

A2g2(γ2) = k2
2α

Q2(γ1,γ2)
sin(κ2h) ,

(14)

where

g j(γ j) = (κ2
j −κ j1κ j3)sin (κ jh)−κ j(κ j1 +κ j3)cos(κ jh) ,

Q j(γ1,γ2) =
(

κ j3 cos(κ jh)−κ j sin(κ jh)
)

×

×
∫ h

0
cos(κ jx) f (|u|2)u jdx−

−κ j3

∫ h

0
cos(κ j(x− h)) f (|u|2)u jdx.

Setting α = 0 in (14) and simplifying, we obtain well-

known dispersion equations for a linear waveguide

g1(γ1) = 0, (15)

g2(γ2) = 0. (16)

5 Numerical results

In this section we chose the particular type of nonlinearity

with saturation given by f
(

|u|2
)

= |u|2
1+β |u|2 , where β > 0 is a

constant, this nonlinearity is widely used in nonlinear optics

[14]. For this nonlinearity F ′
c(v) is bounded and C = 13

4β
.

The following values of parameters are used for calcula-

tions in Figures 1, 2: h = 6 mm, ε1 = 1, ε2 = 2, ε3 = 1,

k1 =
√

1.6 mm, k2 = 1 mm, A1 = 2 V/mm, A2 = 1 V/mm.

Figure 1. Solutions of the first dispersion equation (green

color) and the second dispersion equation (blue color) for

α = 0.01 mm2V−2, β = 0.9 mm2V−2.

For α = 0 we have two independent linear problems, which

describe propagation of TE waves in a linear plane waveg-

uide. Solutions of these problems can be found from disper-

sion equations (15), (16). Under the parameters specified

above equation (15) has 3 linear eigenvalues and equation

(16) has 2 linear eigenvalues.

Approximate solutions of system (14) in Figures 1, 2

are plotted. Green color corresponds to solutions of the

first equation of system (14) and blue color corresponds

to solutions of the second one. Black points of inter-

sections of the blue and green curves are approximate

eigenvalues of the Problem P. Red points approximate

pairs of solutions of the linear problems. Red dashed

lines define the domain Γ̃ =
(

k1

√

max{ε1,ε3}, k1

√
ε2

)

×
(

k2

√

max{ε1,ε3}, k2

√
ε2

)

. All pairs of linear solutions can

exist only inside Γ̃.



Figure 2. Solutions of the first dispersion equation (green

color) and the second dispersion equation (blue color) for

α = 0.09 mm2V−2, β = 0.08 mm2V−2.

In Figure 1 the condition 13α
4β

‖N1‖ < 1 of statement 1 is

valid and only one coupled eigenvalue corresponds to each

pair of linear eigenvalues. In addition, the coupled eigen-

values are close to the corresponding pairs of linear eigen-

values. In Figure 2 13α
4β

‖N1‖ > 1, there are coupled eigen-

values which do not correspond to any pairs of linear eigen-

values and there are only 2 coupled eigenvalues inside Γ̃.

Numerical results show that for q< 1 (for sufficiently small

α and sufficiently large β ) there is a clear (one-to-one) cor-

respondence between the coupled eigenvalues and pairs of

linear solutions, as illustrated by Figure 1. In this case cou-

pled eigenvalues are close to the corresponding pairs of lin-

ear solutions. If α is sufficiently large (or β is sufficiently

small) then the mentioned one-to-one correspondence is de-

stroyed and new nonlinear solutions (coupled eigenvalues)

arise, as illustrated by Figure 2.
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